×
10.12.2014
216.013.0e28

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов. Сероводород и меркаптаны окисляют (Р-1) в присутствии катализатора с получением элементарной серы и диоксида серы. Полученный газ охлаждают для конденсации элементарной серы и подают в последовательно расположенный слой адсорбента (А-1), (А-2). Температуру адсорбента на входе поддерживают равной 130-150°С, а на выходе равной 100-120°С. Изобретение позволяет обеспечить непрерывную очистку от сероводорода газовых потоков с переменным расходом и составом. 4 з.п. ф-лы, 8 пр., 8 табл., 2 ил.

Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов.

Изобретение может найти применение при очистке попутных нефтяных газов, образующихся при добыче и переработке сернистых нефтей, при очистке коксовых и сланцевых газов, а также выбросов химических производств.

В настоящее время для очистки газов от сернистых соединений находит применение метод прямого гетерогенно-каталитического окисления сероводорода кислородом до элементарной серы. При использовании этого метода достигается высокая степень очистки исходных газов при достаточно низких энергозатратах.

Известен способ очистки газов от сернистых соединений (РФ 2144495, С01В 17/04, B01D 53/48, 20.01.2000), согласно которому газы очищают от сернистых соединений путем их окисления кислородом до серы и/или дисульфидов в слое оксидного катализатора с последующим отделением серы от очищенного газа. Катализатор содержит 5-100 мас.% активного компонента и представляет собой монолитный блок, собранный из отдельных пористых элементов со сквозными каналами, причем не менее 50% пор, содержащихся в названных элементах, имеют размер от 1000 до 5000 Ǻ, а объем пор составляет 0,15-0,50 см3/г.

Наиболее близким по технической сущности к заявляемому способу является способ получения элементарной серы из сероводорода (РФ 1627507, С01В 17/04, 15.02.91), основанный на гетерогенно-каталитическом окислении сероводорода, которое проводят в две стадии. На 1-й стадии окисление ведут в псевдоожиженном слое катализатора при 250-300°C, на 2-й стадии - в реакторе со стационарным слоем катализатора при 140-155°C. Отношение кислорода к сероводороду на 1-й стадии составляет 0,5. Способ позволяет очищать газы, содержащие до 50 об.% сероводорода, общая степень конверсии сероводорода в серу достигает 99,99% при жестком соблюдении заданного соотношения кислорода к сероводороду на первой стадии.

Эффективность процесса прямого окисления сероводорода существенно зависит от стабильности параметров исходной газовой смеси (концентрация сероводородов и меркаптанов, расход), что приводит к тому, что разработанные методы прямого окисления сероводорода не позволяют добиться стабильного остаточного содержания сернистых соединений, общая концентрация которых в очищенном газе не должна превышать 20 ppm., что является регламентируемым требованием.

В связи с этим необходима разработка комбинированных технологий, включающих стадии прямого окисления с последующей доочисткой до санитарных норм, что подразумевает разработку многофункциональных адсорбентов, способных эффективно поглощать сернистые соединения различных классов.

Задача, решаемая изобретением, - обеспечение непрерывной очистки от сероводорода газовых потоков с переменным расходом и составом, экологическая надежность и безопасность способа.

Для решения поставленной задачи предложен способ очистки от сероводорода газовых потоков с переменным расходом и составом, включающий окисление сероводорода и меркаптанов кислородом в присутствии катализатора с получением элементарной серы и диоксида серы, газ после стадии прямого окисления охлаждают для конденсации элементарной серы и подают в последовательно расположенный слой многофункционального адсорбента.

Температуру адсорбента на входе поддерживают равной 130-150°C, а на выходе - равной 100-120°C.

В качестве адсорбента используют материал, который содержит железомарганцевые конкреции и имеет следующий состав в пересчете на оксиды, мас.%: Fe2O3 20,0-35,0; MnO2 20,0-35,0; SiO2 10,0-25,0; ZnO 5-10, Al2O3 5,0-10,0; Na2O 2,0-5,0; K2O 1,5-5,0; MgO 1,5-3,0; CaO 1,5-3,0; P2O5 3,0-10,0.

Адсорбент может дополнительно содержать связующее. В качестве связующего он может содержать неорганические соединения, такие как гидроксид алюминия, оксид магния или оксид кальция, в количестве 15-25, преимущественно, 20 мас.%, в пересчете на безводное вещество, а также неорганические кислоты в количестве 3-5 мас.%, в пересчете на безводное вещество. В качестве связующего он может также содержать органические высокомолекулярные соединения в количестве 4-5 мас.%, в пересчете на безводное вещество.

Концептуально процесс очистки газовых потоков от сернистых соединений описывается следующим образом Фиг.1.

В реакторе Р-1 при взаимодействии сернистых соединений очищаемого газа с кислородом воздуха происходит парциальное окисление сероводорода до элементарной серы (1) и глубокое окисление легких меркаптанов с образованием диоксида серы (2).

В связи с тем, что показатели реакции 1 (селективность в отношении образования серы) достаточно чувствительны к соотношению сероводород/кислород, а параметры исходной газовой смеси (концентрация сероводородов и меркаптанов, расход) и как правило, нестабильны, достаточно сложно с точки зрения аппаратурного оформления обеспечить четкое стехиометрическое соотношение кислород/сероводород.

Таким образом, если кислород находится в избытке - образуется SO2, а при недостатке O2 происходит проскок сероводорода. Вследствие этого адсорбент, загруженный в аппараты А-1 и А-2, должен обладать мультифункциональными свойствами и обеспечивать высокую адсорбционную емкость как в отношении сероводорода, так и диоксида серы.

Предполагается расмотреть два варианта регенерациии насыщенных адсорбентов:

А) Регенерация путем воздействия водяного пара. В этом случае преимущественным продуктом является сероводород, поток которого подмешивают к основному потоку очищаемого газа.

Б) Окислительная регенерация, когда асорбент подвергают воздействию кислорода воздуха при температуре 500-600°С. В этом случае образуется диоксид серы, который направляют на восстановительную утилизацию с получением элементарной серы.

Для иллюстрации заявляемого способа приводим примеры его осуществления.

Исследования процесса окисления сероводорода проводят на лабораторной установке, схема которой приведена на Фиг.1.

Особенностью лабораторной установки является возможность проведения реакции прямого окисления сероводорода как в неподвижном, так и в псевдоожиженном слое гранул катализатора, что позволяет добиться высокой изотермичности слоя катализатора (поддержания заданной температуры процесса) при концентрациях сероводорода в исходной газовой смеси вплоть до 100%.

На Фиг.1 представлена блок-схема комбинированной установки с адсорбером и узлом прямого окисления.

На Фиг.2 представлена схема лабораторной установки, где: 1 - реактор с возможностью псевдоожижения слоя катализатора, 2 - печь с кипящим слоем кварцевого песка, 3 - ловушка для жидкой серы, 4 - адсорбер.

Пример 1.

В лабораторный реактор прямого окисления подают газ, моделирующий реальный состав попутного нефтяного или природного газа при давлении 0,5 ати и воздух. Суммарный расход газовой смеси составляет 3,6 дм3/ч.

В реактор загружают 1 г катализатора прямого окисления. В реакторе прямого окисления при оптимальных условиях, установленных при выполнении экспериментов по прямому окислению сернистых соединений, происходит окисление сероводорода до элементарной серы, а меркаптана до диоксида серы. Парогазовая смесь поступает в охлаждаемую ловушку, где ее температура понижается до 150°С, сера конденсируется, а газовый поток поступает в адсорбер, куда загружено 5 г адсорбента состава, мас.%: Fe2O3 20,0; MnO2 20,0; SiO2 - 25,0; ZnO - 6, Al2O3 10,0; Na2O 5,0; K2O 5,0; MgO 3,0; CaO 3,0; P2O5 8,0.

Температуру в адсорбере поддерживают в начале по ходу газа 130-150°С, в конце 100-120°С.

Для регулирования давления в системе на входе из адсорбера установлен клапан. Газовую смесь после ловушки и адсорбера подают для анализа в хроматограф «Кристалл 2000 М».

Результаты экспериментов приведены в таблице 1.

Таблица 1
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (80 ppm) <5 ppm
RSH 100ppm (0,01%) - -
СО2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 97 ppm (0,0097%) <5 ppm

Пример 2.

Аналогичен примеру 1, отличается избыточным давлением, которое составляет 4 ати.

Результаты приведены в таблице 2.

Таблица 2
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 4 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (40 ppm) <5 ppm
RSH 100 ppm (0,01%) - -
CO2 1.1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <5 ppm

Пример 3.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий хвостовые газы процесса Клауса или вентиляционные выбросы. Результаты экспериментов приведены в таблице 3.

Таблица 3
Результаты исследования комбинированного процесса очистки смесей, моделирующих хвостовые газы процесса Клауса или вентиляционные выбросы (давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 0,8 <0,01 (90ррm) <5 ppm
RSH 100ppm(0,01%) - -
CO2 5,0 5.0 5.0
O2 0,41 0,01 0,0
N2 остальное Остальное остальное
SO2 -0,1 0,07% <5 ppm

Пример 4.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий коксовый газ.

Результаты экспериментов приведены в таблице 4.

Таблица 4
Результаты исследования комбинированного процесса очистки смесей, моделирующих коксовый газ (давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 0,16 <0,005 (50 ppm) <5 ppm
Н2 57 57 57
CO2 2,2 2,2 2,2
O2 0,4 0,3 0,3
N2 остальное остальное остальное
СН4 24 24 24
СО 8,0 8,0 8,0
SO2 - 120ppm (0,12% об.) <7ppm

Пример 5.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий кислый газ, образующийся при аминовой очистке сероводородсодержащих потоков.

Результаты экспериментов приведены в таблице 5.

Таблица 5
Результаты исследования комбинированного процесса очистки смесей, моделирующих кислые газы образующихся при аминовой очистке сероводородсодержащих потоков (давление изб. - 0,4 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора Точка отбора пробы №1 После адсорбера
Точка отбора пробы №2 10 ч непрерывной работы
H2S 15 50 ppm <5 ppm
CO2 60 58,85 58,85
O2 8 0,00 0,00
N2 остальное остальное остальное
СН4 1 1,28 24
SO2 - 1,28 <10 ppm

Пример 6.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий сланцевый газ

Результаты экспериментов приведены в таблице 6.

Таблица 6
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь сланцевый газ, давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (40ppm) <5 ppm
CO2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <8 ppm

Пример 7.

Аналогичен примеру 1, отличается составом адсорбента

Используют адсорбент следующего состава, мас.%: Fe2O3 35,0; MnO2 35,0; SiO2 10,0; ZnO 5, Al2O3 5,0; Na2O 2,0; K2O 2,0; MgO 1,5; CaO 1,5; P2O5 3,0. Результаты экспериментов приведены в таблице 7.

Таблица 7
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 0,5 ати).
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (80 ppm) <4 ppm
RSH 100 ppm (0,01%) - -
CO2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <5 ppm

Пример 8.

Аналогичен примеру 1, отличается составом адсорбента. Используют адсорбент следующего состава, мас.%: Fe2O3 25,0; MnO2 25,0; SiO2 15,0; ZnO 9,5, Al2O3 7,5; Na2O 3,5; K2O 3,0; MgO 2,5; CaO 2,0; P2O5 7,0.

Результаты экспериментов приведены в таблице 8.

Таблица 8
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (80ppm) <8 ppm
RSH 100 ppm (0,01%) - -
CO2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <5 ppm

Как видно из представленных данных разработанный комбинированный способ позволяет очистить модельные газы различного состава до требуемых регламентируемых норм.


СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА
СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 114.
25.08.2017
№217.015.a79b

Каталитическая система для гетерогенных реакций

Изобретение относится к каталитической системе для гетерогенных реакций, представляющей собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения...
Тип: Изобретение
Номер охранного документа: 0002607950
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.ab99

Катализатор гидродеоксигенации алифатических кислородсодержащих соединений и гидроизомеризации н-парафинов и способ его приготовления

Изобретение относится к катализаторам для процесса гидродеоксигенации алифатических кислородсодержащих соединений и одновременной гидроизомеризации н-алканов, который в качестве активного компонента содержит фосфид никеля и/или молибдена в количестве 2.5-10.0 мас. % при следующем атомном...
Тип: Изобретение
Номер охранного документа: 0002612303
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b352

Способ получения золото-углеродного наноструктурированного композита

Изобретение относится к технологии приготовления наноструктурированных композитов на основе высокопористых углеродных матриц, наполненных наночастицами золота. Способ получения золото-углеродного наноструктурированного композита включает подготовку высокопористой углеродной матрицы путем...
Тип: Изобретение
Номер охранного документа: 0002613681
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c60f

Способ получения n-(фосфонометил)-глицина

Изобретение относится к процессу получения используемого в сельском хозяйстве N-(фосфонометил)-глицина (Глифосата). В предложенном способе N-(фосфонометил)-иминодиуксусную кислоту подвергают каталитическому жидкофазному окислению водным раствором пероксида водорода в двухфазной системе...
Тип: Изобретение
Номер охранного документа: 0002618629
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c925

Способ глубокого окисления органических соединений

Изобретение относится к области химии и экологии, а именно глубокому окислению органических соединений, которое может быть применено к процессам очистки и обезвреживания газообразных и жидких выбросов, для дожига вредных органических соединений, в том числе летучих, галогенсодержащих и т.п., в...
Тип: Изобретение
Номер охранного документа: 0002619274
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.d13d

Способ получения диалкилсульфидов

Изобретение относится к способу получения диалкилсульфидов из «дисульфидного масла», взаимодействием «дисульфидного масла» с метанолом в присутствии катализатора гамма оксида алюминия, при атмосферном давлении, температуре 350-400°С, мольном соотношени метанола и «дисульфидного масла»...
Тип: Изобретение
Номер охранного документа: 0002622046
Дата охранного документа: 09.06.2017
26.08.2017
№217.015.d906

Носитель для катализаторов на основе оксида алюминия и способ его приготовления

Изобретение относится к способам получения носителей катализаторов различной геометрической формы на основе оксида алюминия со структурой корунда и может быть использовано в производстве катализаторов. Носитель для катализаторов на основе оксида алюминия со структурой корунда различной...
Тип: Изобретение
Номер охранного документа: 0002623436
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.dc4a

Способ получения реакторного порошка сверхвысокомолекулярного полиэтилена

Изобретение относится к способу получения реакторного порошка сверхвысокомолекулярного полиэтилена РП СВМПЭ. Способ проводят путем полимеризации этилена в среде алифатического растворителя с использованием феноксииминных титан-галоидных комплексов. Катализатор полимеризации вводят в реакционную...
Тип: Изобретение
Номер охранного документа: 0002624215
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dca4

Катализатор окисления аммиака

Изобретение относится к катализаторам окисления аммиака блочной сотовой структуры, включающим в свой состав оксиды железа, алюминия, кремния и стабилизирующую добавку, при следующем соотношении компонентов: оксид железа - 65-80; оксид алюминия - 19-30; оксид кремния 0,01-5, стабилизирующая...
Тип: Изобретение
Номер охранного документа: 0002624218
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e34f

Способ получения оксида алюминия со структурой χ-alo

Изобретение относится к способу получения нанодисперсной фазы со структурой χ-AlO. Изобретение может быть использовано в производстве адсорбентов, носителей и катализаторов на основе оксида алюминия, а также в производстве керамики. Способ получения нанодисперсной фазы со структурой χ-AlO...
Тип: Изобретение
Номер охранного документа: 0002626004
Дата охранного документа: 21.07.2017
Показаны записи 91-100 из 124.
25.08.2017
№217.015.ab99

Катализатор гидродеоксигенации алифатических кислородсодержащих соединений и гидроизомеризации н-парафинов и способ его приготовления

Изобретение относится к катализаторам для процесса гидродеоксигенации алифатических кислородсодержащих соединений и одновременной гидроизомеризации н-алканов, который в качестве активного компонента содержит фосфид никеля и/или молибдена в количестве 2.5-10.0 мас. % при следующем атомном...
Тип: Изобретение
Номер охранного документа: 0002612303
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b352

Способ получения золото-углеродного наноструктурированного композита

Изобретение относится к технологии приготовления наноструктурированных композитов на основе высокопористых углеродных матриц, наполненных наночастицами золота. Способ получения золото-углеродного наноструктурированного композита включает подготовку высокопористой углеродной матрицы путем...
Тип: Изобретение
Номер охранного документа: 0002613681
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c60f

Способ получения n-(фосфонометил)-глицина

Изобретение относится к процессу получения используемого в сельском хозяйстве N-(фосфонометил)-глицина (Глифосата). В предложенном способе N-(фосфонометил)-иминодиуксусную кислоту подвергают каталитическому жидкофазному окислению водным раствором пероксида водорода в двухфазной системе...
Тип: Изобретение
Номер охранного документа: 0002618629
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c925

Способ глубокого окисления органических соединений

Изобретение относится к области химии и экологии, а именно глубокому окислению органических соединений, которое может быть применено к процессам очистки и обезвреживания газообразных и жидких выбросов, для дожига вредных органических соединений, в том числе летучих, галогенсодержащих и т.п., в...
Тип: Изобретение
Номер охранного документа: 0002619274
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.d13d

Способ получения диалкилсульфидов

Изобретение относится к способу получения диалкилсульфидов из «дисульфидного масла», взаимодействием «дисульфидного масла» с метанолом в присутствии катализатора гамма оксида алюминия, при атмосферном давлении, температуре 350-400°С, мольном соотношени метанола и «дисульфидного масла»...
Тип: Изобретение
Номер охранного документа: 0002622046
Дата охранного документа: 09.06.2017
26.08.2017
№217.015.d906

Носитель для катализаторов на основе оксида алюминия и способ его приготовления

Изобретение относится к способам получения носителей катализаторов различной геометрической формы на основе оксида алюминия со структурой корунда и может быть использовано в производстве катализаторов. Носитель для катализаторов на основе оксида алюминия со структурой корунда различной...
Тип: Изобретение
Номер охранного документа: 0002623436
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.dc4a

Способ получения реакторного порошка сверхвысокомолекулярного полиэтилена

Изобретение относится к способу получения реакторного порошка сверхвысокомолекулярного полиэтилена РП СВМПЭ. Способ проводят путем полимеризации этилена в среде алифатического растворителя с использованием феноксииминных титан-галоидных комплексов. Катализатор полимеризации вводят в реакционную...
Тип: Изобретение
Номер охранного документа: 0002624215
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dca4

Катализатор окисления аммиака

Изобретение относится к катализаторам окисления аммиака блочной сотовой структуры, включающим в свой состав оксиды железа, алюминия, кремния и стабилизирующую добавку, при следующем соотношении компонентов: оксид железа - 65-80; оксид алюминия - 19-30; оксид кремния 0,01-5, стабилизирующая...
Тип: Изобретение
Номер охранного документа: 0002624218
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e34f

Способ получения оксида алюминия со структурой χ-alo

Изобретение относится к способу получения нанодисперсной фазы со структурой χ-AlO. Изобретение может быть использовано в производстве адсорбентов, носителей и катализаторов на основе оксида алюминия, а также в производстве керамики. Способ получения нанодисперсной фазы со структурой χ-AlO...
Тип: Изобретение
Номер охранного документа: 0002626004
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e361

Каталитический генератор теплоты и способ регулирования его мощности

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения и при сжигании топлива для нагрева рабочих тел, где сжигание различных топлив происходит в псевдоожиженном слое. Каталитический генератор теплоты состоит из вертикального корпуса с патрубками подачи...
Тип: Изобретение
Номер охранного документа: 0002626043
Дата охранного документа: 21.07.2017
+ добавить свой РИД