×
10.12.2014
216.013.0e11

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЛИГНИНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения содержания лигнина Класона. Способ определения лигнина заключается в том, что к лигноцеллюлозному материалу добавляют водно-диоксановый раствор, полученный смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 2 М раствор гидроксида натрия, объем реакционной смеси доводят дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате. Изобретение заключается в упрощении и ускорении выполнения анализа. 2 табл., 24 пр.
Основные результаты: Способ определения лигнина путем химической обработки лигноцеллюлозного материала с последующим отделением лигнина и определением его количества, отличающийся тем, что к 100 мг лигноцеллюлозного материала добавляют 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 10 мл 2 М раствора гидроксида натрия, объем реакционной смеси доводят до 50 мл дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате.

Изобретение относится к процессам контроля химической переработки растительного сырья, а именно к способам определения лигнина Класона. Задача количественного определения лигнина имеет важное практическое значение как для технологии переработки лигноцеллюлозных материалов, так и для исследования их компонентов, для оценки количества лигнинных веществ в сточных водах, контроля технологических процессов [Хабаров Ю.Г., Песьякова Л.А. Аналитическая химия лигнина: монография. - Архангельск: Изд-во АГТУ, 2008. - 172 с.].

Для определения содержания лигнина в целлюлозных полуфабрикатах предложено большое число различных прямых и косвенных методов.

Известен метод определения лигнина с помощью азотной кислоты. Сущность метода заключается в обработке лигноцеллюлозного материала 14%-ной азотной кислотой при нагревании в течение 20 мин. В результате такой обработки лигнин нитруется и частично переходит в раствор. Нерастворившийся целлюлозный остаток отделяют фильтрованием и у фильтрата определяют оптическую плотность при 425 нм. По величине оптической плотности судят о содержании лигнина в лигноцеллюлозном материале [Henriksen A., Kesler R.B. The Nu-number, a measure of lignin in pulp // Tappi J. - 1970. - Vol.53, N 6. - P.1131-1140]. Недостатком этого метода является сложность выполнения анализа. Кроме того, метод обладает недостаточной чувствительностью.

Известен метод Попова, по которому для определения лигнина проводят предварительный гидролиз углеводов лигноцеллюлозного материала 37%-ной хлороводородной кислотой с добавкой 40%-ного водного раствора ZnCl2 в течение 30 мин при 45°С. Окончательный гидролиз проводят путем кипячения с обратным холодильником в течение 1 ч после добавления заданного количества воды. Остаток лигнина фильтруют, сушат и взвешивают [Попов И.Д. Върху методиката за количествено определяне на лигнина // Изв. Ин-та Биол. Бълг. АН. - 1957. - Vol.7. - Р.149-154]. Недостатками этого метода являются сложность выполнения анализа, многостадийность и длительная гравиметрическая методика определения массы лигнина.

Известен автоклавный метод определения лигнина путем гидролитического растворения полисахаридов, которое проводится в автоклаве с помощью 1%-ного раствора хлороводородной кислоты при давлении 5…6 ат. Продолжительность гидролиза составляет 6…7 ч. После гидролиза осадок лигнина фильтруют, промывают и сушат до постоянной массы [Konig Rump // Ztschr. Unters. Nahr. - Genussmitt. - 1914. - Bd. 28. - P.188]. Недостатками этого метода являются сложность, многостадийность, большая продолжительность гидролиза, необходимость применения автоклава, а также длительная гравиметрическая методика определения массы лигнина.

Известен метод Кларка, в котором гидролиз углеводов до моносахаридов легко проходит под действием безводной фтороводородной кислоты, которая быстро диффундирует в лигноцеллюлозный материал, вызывает его сильное набухание и не приводит к гумификации. Кроме безводной кислоты может быть использован и 80%-ный раствор HF. Полный гидролиз углеводов хвойной древесины проводится при 18…20°С в течение 30 мин, а лиственной - при 30°С. [Clark I.T. Determination of lignin by hydrofluoric acid // Tappi J. - 1962. - Vol.45, N 4. - P.310-314]. Недостатком этого метода является невозможность применять стеклянную посуду.

Известен способ определения лигнина в целлюлозных полуфабрикатах, по которому целлюлозный полуфабрикат обрабатывают в течение 1 ч 72%-ной серной кислотой. Затем добавляют концентрированную азотную кислоту и после тщательного перемешивания раствор разбавляют водой до заданного объема и подщелачивают раствором гидроксида натрия, и измеряют оптическую плотность полученного раствора при 315 нм. По величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате. [Патент РФ 2405877, МПК D21C 3/04 (2006.01); G01N 33/46 (2006.01); G01N 9/36 (2006.01); C07G 1/00 (2006.01). Способ определения лигнина в целлюлозных полуфабрикатах. - 2010. - Бюл. №34]. Недостатками указанного способа являются сложность выполнения - многостадийность, длительность выполнения. Кроме того, не всегда удается достичь полного растворения лигноцеллюлозного материала.

Наиболее близким к заявляемому является метод определения лигнина с помощью серной кислоты - метод Класона [прототип]. Сернокислотный метод определения лигнина во многих странах был выбран в качестве стандартного. Модификацией метода Класона, которая применяется в России, является метод Комарова [Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. - М.: Экология, 1991. - 320 с.].

1 г лигноцеллюлозного материала предварительно в течение 2,5 ч обрабатывается 15 мл концентрированной (72%-ной) серной кислоты при комнатной температуре. Затем добавляют воду до концентрации серной кислоты 3% и проводят окончательный гидролиз углеводов путем нагревания с обратным холодильником в течение 1…5 ч. Затем осадок лигнина отделяют от раствора фильтрованием, тщательно промывают от следов серной кислоты, высушивают до постоянной массы при 105°С и взвешивают. В фильтрате с помощью метода УФ-спектроскопии определяют кислоторастворимую часть лигнина.

Недостатками сернокислотного метода являются сложность выполнения анализа, длительные стадии выполнения анализа, двухступенчатый гидролиз и гравиметрическая процедура определения массы лигнина.

Задачей предлагаемого изобретения является сокращение продолжительности и упрощение выполнения анализа.

Это достигается тем, что лигноцеллюлозный материал обрабатывают при нагревании азотной кислотой в водно-диоксановой среде, в ходе которой лигнин переходит в раствор, после чего реакционную смесь подщелачивают, отделяют нерастворившуюся углеводную часть, а в растворе определяют количество лигнина с помощью спектрофотометрии.

Способ осуществляется следующим образом. К 100 мг лигноцеллюлозного материала (ЛЦМ) добавляют 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему). Реакционную смесь нагревают на кипящей водяной бане в течение 15 минут. Затем добавляют 10 мл 2 М раствора гидроксида натрия. Объем реакционной смеси доводят до 50 мл дистиллированной водой и фильтруют. У фильтрата измеряют его оптическую плотность при 440 нм. По величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате.

Пример 1. Реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 1 мл диоксанового раствора сульфатного промышленного лигнина (концентрацией 30 мг/мл), нагревали на кипящей водяной бане в течение 15 минут. Затем добавляли 10 мл 2 М раствора гидроксида натрия. Объем реакционной смеси доводили до 50 мл дистиллированной водой и измеряли оптическую плотность при 440 нм (толщина кюветы 1 см, в кювете сравнения - дистиллированная вода). Величина оптической плотности при 440 нм составляет 1,692.

Пример 2. Анализу в условиях примера 1 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,9 мл диоксанового раствора сульфатного промышленного лигнина и 0,1 мл диоксана. Величина оптической плотности при 440 нм составляет 1,623.

Пример 3. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,8 мл диоксанового раствора сульфатного промышленного лигнина и 0,2 мл диоксана. Величина оптической плотности при 440 нм составляет 1,529.

Пример 4. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,7 мл диоксанового раствора сульфатного промышленного лигнина и 0,3 мл диоксана. Величина оптической плотности при 440 нм составляет 1,404.

Пример 5. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,6 мл диоксанового раствора сульфатного промышленного лигнина и 0,4 мл диоксана. Величина оптической плотности при 440 нм составляет 1,208.

Пример 6. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,5 мл диоксанового раствора сульфатного промышленного лигнина и 0,5 мл диоксана. Величина оптической плотности при 440 нм составляет 1,117.

Пример 7. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,4 мл диоксанового раствора сульфатного промышленного лигнина и 0,6 мл диоксана. Величина оптической плотности при 440 нм составляет 0,916.

Пример 8. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,3 мл диоксанового раствора сульфатного промышленного лигнина и 0,7 мл диоксана. Величина оптической плотности при 440 нм составляет 0,769.

Пример 9. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,2 мл диоксанового раствора сульфатного промышленного лигнина и 0,8 мл диоксана. Величина оптической плотности при 440 нм составляет 0,573.

Пример 10. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,1 мл диоксанового раствора сульфатного промышленного лигнина и 0,9 мл диоксана. Величина оптической плотности при 440 нм составляет 0,248.

Пример 11. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 1 мл диоксана. Величина оптической плотности при 440 нм составляет 0,019.

Результаты опытов 1…11 сведены в таблице 1. На основе данных таблицы 1 по методу наименьших квадратов были вычислены коэффициенты градуировочной зависимости:

(коэффициент парной корреляции 0,9911).

Таблица 1
Исходные данные для построения градуировочного графика
Пример Объем раствора сульфатного лигнина, мл Масса сульфатного лигнина, мг Оптическая плотность при 440 нм
1 1 30 1,692
2 0,9 27 1,623
3 0,8 24 1,529

4 0,7 21 1,404
5 0,6 18 1,208
6 0,5 15 1,117
7 0,4 12 0,916
8 0,3 9 0,769
9 0,2 6 0,573
10 0,1 3 0,248
11 0 0 0,019

Пример 12. К 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 17,44%, добавляли 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему). Реакционную смесь нагревали на кипящей водяной бане в течение 15 минут.

Затем добавляли 10 мл 2 М раствора гидроксида натрия. Объем реакционной смеси доводили до 50 мл дистиллированной водой и фильтровали. У фильтрата измеряли оптическую плотность при 440 нм (толщина кюветы 1 см, в кювете сравнения - дистиллированная вода). Величина оптической плотности при 440 нм составляет 1,547, что с учетом градуировочной зависимости соответствует 16,59% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 4,90%.

Пример 13. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 10,79%. Величина оптической плотности при 440 нм составляет 1,129, что с учетом градуировочной зависимости соответствует 10,64% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 1,35%.

Пример 14. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 9,7%. Величина оптической плотности при 440 нм составляет 1,074, что с учетом градуировочной зависимости соответствует 9,93% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 2,40%.

Пример 15. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 7,21%. Величина оптической плотности при 440 нм составляет 0,843, что с учетом градуировочной зависимости соответствует 7,16% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,75%.

Пример 16. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 5,85%. Величина оптической плотности при 440 нм составляет 0,702, что с учетом градуировочной зависимости соответствует 5,64% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 3,53%.

Пример 17. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 5,60%. Величина оптической плотности при 440 нм составляет 0,694, что с учетом градуировочной зависимости соответствует 5,56% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,64%.

Пример 18. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 4,90%. Величина оптической плотности при 440 нм составляет 0,549, что с учетом градуировочной зависимости соответствует 4,20% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 14,30%.

Пример 19. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 4,76%. Величина оптической плотности при 440 нм составляет 0,561, что с учетом градуировочной зависимости соответствует 4,30% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 9,69%.

Пример 20. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 4,25%. Величина оптической плотности при 440 нм составляет 0,468, что с учетом градуировочной зависимости соответствует 3,51% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 17,47%.

Пример 21. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 3,45%. Величина оптической плотности при 440 нм составляет 0,419, что с учетом градуировочной зависимости соответствует 3,12% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 9,50%.

Пример 22. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 2,04%. Величина оптической плотности при 440 нм составляет 0,262, что с учетом градуировочной зависимости соответствует 2,04% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,09%.

Пример 23. Анализу в условиях примера 12 подвергли 50 мг опилок сосны (фракция менее 1 мм), содержание лигнина Класона в котором составляет 30,80%. Величина оптической плотности при 440 нм составляет 1,239, что с учетом градуировочной зависимости соответствует 30,60% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,64%.

Пример 24. Анализу в условиях примера 12 подвергли 50 мг опилок осины (фракция менее 1 мм), содержание лигнина Класона в котором составляет 18,80%. Величина оптической плотности при 440 нм составляет 0,891, что с учетом градуировочной зависимости соответствует 20,17% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 7,30%.

Таблица 2
Результаты определения содержания лигнина в целлюлозных полуфабрикатах
Пример Оптическая плотность при 440 нм Содержание лигнина Класона в ЛЦМ, % Погрешность определения лигнина, %
известное определенное по предлагаемому методу
12 1,547 17,44 16,59 4,9
13 1,129 10,79 10,64 1,4
14 1,074 9,7 9,93 2,4
15 0,843 7,21 7,16 0,8
16 0,702 5,85 5,64 3,5
17 0,694 5,6 5,56 0,64
18 0,549 4,9 4,20 14,3
19 0,561 4,76 4,30 9,7
20 0,468 4,25 3,51 17,5
21 0,419 3,45 3,12 9,5
22 0,262 2,04 2,04 0,1
23 1,239 30,8 30,60 0,6
24 0,891 18,8 20,17 7,3

Результаты определений, сведенные в таблице 2, свидетельствуют о хорошей точности определения содержания лигнина Класона в лигноцеллюлозных материалах.

Способ определения лигнина путем химической обработки лигноцеллюлозного материала с последующим отделением лигнина и определением его количества, отличающийся тем, что к 100 мг лигноцеллюлозного материала добавляют 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 10 мл 2 М раствора гидроксида натрия, объем реакционной смеси доводят до 50 мл дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 91.
27.10.2015
№216.013.8854

Способ нитрозирования сульфатного лигнина

Изобретение относится к способу нитрозирования сульфатного лигнина путем смешения нитрита натрия и сульфатного лигнина и последующей выдержки реакционной смеси. При этом реакционную смесь подкисляют и нитрозирование проводится в водно-диоксановом растворе. Способ позволяет проводить реакцию в...
Тип: Изобретение
Номер охранного документа: 0002566503
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c40

Узел резания круглопильного станка

Изобретение относится к деревообрабатывающей промышленности, в частности к пильному оборудованию. Узел резания круглопильного станка включает кольцевую пилу, установленную на опорном диске, закрепленном на станине. Привод пилы осуществляется через приводные и прижимные шары, установленные в...
Тип: Изобретение
Номер охранного документа: 0002567511
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c42

Узел резания лесопильного станка

Изобретение относится к деревообрабатывающей промышленности, в частности к лесопильному оборудованию. Узел резания лесопильного станка включает нерастянутые полосовые пилы, установленные в направляющих и в верхнем и нижнем стержнях, проходящих через отверстия, выполненные на концах пил. Нижний...
Тип: Изобретение
Номер охранного документа: 0002567513
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c43

Погрузчик

Изобретение относится к лесопильной и деревообрабатывающей промышленности и может быть использовано при широком комплексе работ на лесосеке и лесоскладе. Погрузчик включает самоходное шасси, гидроманипулятор, на рукояти которого установлен двухплечий рычаг, снабженный захватом и упором. На...
Тип: Изобретение
Номер охранного документа: 0002567514
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c46

Сборная цилиндрическая фреза

Изобретение относится к деревообрабатывающей промышленности, в частности к дереворежущим инструментам. Сборная цилиндрическая фреза содержит корпус, в котором каждый режущий элемент закреплен прижимной планкой с наклонными цилиндрическими поверхностями на концах. Цилиндрические поверхности...
Тип: Изобретение
Номер охранного документа: 0002567517
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ccd

Способ получения феррита меди

Изобретение может быть использовано в химической промышленности. Способ получения феррита меди(II) включает добавление к горячему раствору солей железа(II) и меди(II) нитрита натрия. К полученной смеси добавляется раствор гидроксида натрия. Выделившуюся смесь оксидов железа(III) и меди(II)...
Тип: Изобретение
Номер охранного документа: 0002567652
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d48

Способ выравнивания торцов сортиментов

Область применения: лесная промышленность. Назначение: способ выравнивания торцов сортиментов. Способ выравнивания торцов сортиментов включает укладку пачки сортиментов в торцевыравниватель, относительное смещение сортиментов вдоль продольной оси под воздействием рабочих органов...
Тип: Изобретение
Номер охранного документа: 0002567775
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8da7

Трансформатор с трехфазной и круговой обмотками

Изобретение относится к электротехнике и может быть использовано в многофазных полупроводниковых преобразователях, в частности в инверторах, выпрямителях, обратимых преобразователях, преобразователях постоянного напряжения. Трансформатор с трехфазной и круговой обмотками формируется из двух...
Тип: Изобретение
Номер охранного документа: 0002567870
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.99f0

Способ разработки лесосек

Изобретение относится к лесной промышленности и может быть использовано при производстве лесосечных работ. Способ включает наводку харвестерной головки на ствол дерева, его захват в комлевой части, спиливание и валку дерева харвестером, обработку дерева, включающую обрезку сучьев и раскряжевку...
Тип: Изобретение
Номер охранного документа: 0002571033
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e3a

Способ осаждения ионов хрома (vi)

Изобретение может быть использовано при переработке токсичных отходов производства, содержащих хром(VI). Способ осаждения ионов хрома(VI) из растворов включает взаимодействие ионов хрома(VI) с реагентом-восстановителем в кислой среде и последующее добавление осадителя. В качестве...
Тип: Изобретение
Номер охранного документа: 0002572136
Дата охранного документа: 27.12.2015
Показаны записи 41-50 из 108.
10.05.2015
№216.013.48e6

Фундамент на пучинистых грунтах

Изобретение относится к области строительства, а именно к фундаментам линейных сооружений, возводимых на пучинистых грунтах. Фундамент на пучинистых грунтах включает малозаглубленную плиту с отверстием и грунтовый анкер. Анкер пропущен между торцами продольных секций сооружения, опирающихся на...
Тип: Изобретение
Номер охранного документа: 0002550169
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a19

Средство для очистки от ржавчины поверхности черных металлов

Изобретение относится к химическим средствам удаления продуктов коррозии с поверхности черных металлов. Средство является экологически безопасным и представляет собой продукт деполимеризации гидролизного лигнина азотной кислотой в водно-органосольвентной среде. Предложенное средство позволяет...
Тип: Изобретение
Номер охранного документа: 0002550476
Дата охранного документа: 10.05.2015
10.07.2015
№216.013.5e79

Топочное устройство

Изобретение относится к области малой энергетики, в частности к устройствам теплоснабжения небольших частных домов и секторов малоэтажной застройки. Технический результат - снижение выбросов вредных веществ до минимальных значений и повышение коэффициента полезного действия. Топочное устройство...
Тип: Изобретение
Номер охранного документа: 0002555726
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f78

Прибор для испытаний грунтов на сжимаемость

Изобретение относится к строительству и предназначено для определения в лабораторных условиях механических характеристик грунта, а именно модуля деформации и коэффициента поперечных деформаций. Прибор для испытаний грунта на сжимаемость содержит цилиндрический корпус, перфорированный поршень и...
Тип: Изобретение
Номер охранного документа: 0002555981
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6233

Прибор для определения деформаций морозного пучения грунта

Изобретение относится к приборам для измерения деформаций морозного пучения грунта в лабораторных условиях. Прибор содержит гильзы для образцов исследуемого грунта, которые составлены из колец, поддон с водой, штампы, теплоизоляцию и датчики температуры. При этом гильзы размещены на...
Тип: Изобретение
Номер охранного документа: 0002556681
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6314

Отжимная направляющая ленточной пилы

Изобретение относится к лесопильной промышленности, в частности к лесопильному оборудованию. Отжимная направляющая ленточной пилы содержит корпус с рабочей поверхностью. Рабочая поверхность корпуса в месте контакта ее с полотном пилы выполнена выпуклой в сторону пильной ленты. Повышается...
Тип: Изобретение
Номер охранного документа: 0002556911
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6482

Способ испытания свай статической нагрузкой

Изобретение относится к строительству и может быть использовано для определения несущей способности свай в существующих фундаментах при обследовании зданий перед реконструкцией. Способ включает отрывку фундамента с обнажением подошвы ростверка, поочередное выполнение двух прорезей со стороны...
Тип: Изобретение
Номер охранного документа: 0002557277
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.664f

Способ определения лигнина в целлюлозных полуфабрикатах

Изобретение относится к способам определения содержания лигнина в целлюлозных полуфабрикатах. Способ определения лигнина в целлюлозных полуфабрикатах путем химической обработки с последующим отделением лигнина и определения его количества заключается в том, что химическую обработку целлюлозного...
Тип: Изобретение
Номер охранного документа: 0002557744
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6a82

Прибор для определения деформационных и прочностных свойств грунта

Изобретение относится к строительству, в частности к устройствам для определения деформационно-прочностных свойств органических и органо-минеральных грунтов. Прибор содержит гильзу для образца грунта, перфорированное днище, поршень, механизм нагружения поршня, штамп и механизм нагружения...
Тип: Изобретение
Номер охранного документа: 0002558819
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f89

Трансформатор с трехфазной, круговой силовой и круговой информационной обмотками

Изобретение относится к электротехнике и может быть использовано в многофазных полупроводниковых преобразователях, а именно в выпрямителях, инверторах и преобразователях частоты. Технический результат состоит в повышении к.п.д., коэффициента мощности, точности и надежности регулирования...
Тип: Изобретение
Номер охранного документа: 0002560123
Дата охранного документа: 20.08.2015
+ добавить свой РИД