×
10.12.2014
216.013.0dfc

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических комплексных соединения [Co(HO)(L)][MoO(CHO)] и [Ni(HO)(L)][MoO(CHO)], где L - частично депротонированная форма лимонной кислоты CHO; x=0 или 2; y=0 или 1. Далее катализатор сушат и получают катализатор, содержащий компоненты в следующих концентрациях, мас.%: суммарно [Co(HO)(L)][MoO(CHO)] и [Ni(HO)(L)][MoO(CHO)] - 24,5-39,0; в том числе [Co(HO)(L)][MoO(CHO)] - 6,2-29,5; [Ni(HO)(L)][MoO(CHO)] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-AlO - остальное. Это соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе СоО - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; AlO - остальное. Предлагаемый способ позволяет получать катализатор, который имеет максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья, и обеспечивает получение нефтепродуктов с низким содержанием серы. 6 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к способам приготовления катализаторов для получения нефтяных дистиллятов с низким содержанием серы.

В последние годы Российские нефтеперерабатывающие заводы переходят к производству моторных топлив, по остаточному содержанию серы соответствующих стандарту Евро-5 и новым российским и европейским стандартам [ГОСТ Р 52368-2005 (ЕН 590-2004), ГОСТ Р 51866-2002 (ЕН 228-2004)]. По этим стандартам остаточное содержание серы в гидроочищенных продуктах не должно превышать 10 ppm.

Существующие марки российских катализаторов имеют низкую активность и не позволяют резко снизить содержание серы в получаемых продуктах без ужесточения условий проведения процесса гидроочистки. Основной причиной низкой активности известных катализаторов являются неоптимальные способы их приготовления.

Соответственно, чрезвычайно актуальной задачей является создание новых способов приготовления, обеспечивающих получение катализаторов, характеризующихся оптимальным химическим составом, текстурными и прочностными характеристиками, и вследствие этого имеющими повышенную активность в гидроочистке серосодержащего углеводородного сырья.

Известны различные способы приготовления катализаторов гидроочистки нефтяных дистиллятов, однако общим недостатком для них является высокое остаточное содержание серы в получаемых продуктах.

Чаще всего для гидроочистки углеводородного сырья используют катализаторы, содержащие оксиды кобальта и/или никеля и молибдена, нанесенные на оксид алюминия. Так известен способ приготовления катализатора гидроочистки нефтепродуктов [РФ №2246987, B01J 37/02, 23/88, C10G 45/08, 27.02.2005]. Согласно этому способу катализатор готовят путем двухэтапной пропитки предварительно прокаленного носителя раствором гептамолибдата аммония на первом этапе и растворами нитрата никеля и/или кобальта на втором, с промежуточной термообработкой при 100-200°C и конечной термообработкой при 100-200°C и 400-650°C. Катализатор, приготовленный по данному способу, имеет следующий состав, мас.%: MoO3 - 3,0-25,0; CoO и/или NiO - 1,0-8,0; носитель - остальное. Основным недостатком такого способа приготовления катализатора является высокое содержание серы в получаемых продуктах при гидроочистке с его использованием.

Для повышения активности катализаторов используют их модифицирование различными добавками, при этом добавки могут вводиться на стадии приготовления носителя. Так известен способ приготовления катализатора [РФ №2286846, B01J 23/78, C10G 45/08, 10.11.2006], включающий стадию предварительного модифицирования носителя. Известный катализатор содержит оксиды кобальта, молибдена, натрия, лантана, бора и фосфора и имеет следующий состав, мас.%: CoO 2,5-4,0; MoO3 8,0-12,0; Na2O 0,01-0,08; La2O3 1,5-4,0; P2O5 2,0-5,0; B2O3 0,5-3,0; Al2O3 - остальное. Способ приготовления известного катализатора заключается в приготовлении носителя по следующей методике - гидроксид алюминия смешивают с раствором борной кислоты и азотнокислым раствором карбоната лантана с последующей сушкой и прокалкой, и дальнейшей пропиткой полученного носителя раствором азотнокислого кобальта и парамолибдата аммония при pH 2,0-3,5 и температуре 40-80°C в присутствии фосфорной кислоты.

Катализаторы гидроочистки также могут быть приготовлены с использованием комплексных солей металлов. Так, известен способ получения катализатора гидроочистки нефтяных фракций [РФ №2074025, B01J 21/04, 27.02.1997] содержащего, мас.%: 14-21 MoO3; 3-8 NiO или СоО; 0,5-6 P2O5; Al2O3 - остальное, путем нанесения соединений активных компонентов на окись алюминия соосаждением солей металлов VIII и VI групп Периодической системы, а также фосфора с последующей формовкой каталитической массы в виде экструдатов, сушкой и прокладкой полученных гранул, характеризующийся тем, что с целью получения катализатора с повышенной активностью в реакциях гидрообессеривания нефтяных фракций, при синтезе катализатора активные компоненты вводятся в гидроокись алюминия в виде комплексного раствора солей металлов VIII и VI групп, стабилизированного фосфорной кислотой при условии, что pH раствора фосфорной кислоты составляет 0,5-2,5 при температуре 40-60°C.

В качестве комплексных соединений активных металлов для приготовления катализаторов могут использоваться биметаллические комплексные соединения, включающие в свой состав фосфорсодержащие гетерополианионы. Так, известен катализатор гидроочистки и способ его приготовления [РФ №2387475, B01J 21/04, C10G 45/08, 27.04.2010]. Способ приготовления заключается в пропитке носителя водным раствором биметаллического комплексного соединения [M(H2O)2(H2N)2CO]2[P2Mo5O23]×0,5M(H2O)6, где М-Со2+ или Ni2+ или их смесь, при этом раствор имеет такую концентрацию, чтобы готовый катализатор содержал 20-30 мас.% этого соединения. Далее катализатор сушат при 120-220°C. Готовый катализатор имеет объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г, средний диаметр пор 9-13 нм и содержит биметаллическое комплексное соединение [M(H2O)2(H2N)2CO]2[P2Mo5O23]×0,5M(H2O)6 - 20-30 мас.%, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: МоО3 - 12,0-18,0; М - 3,0-4,6; P2O5 - 2,3-3,6, Al2O3 - остальное.

Общим недостатком для вышеперечисленных способов приготовления является то, что с их использованием в гидроочистке углеводородного сырья катализаторов, приготовленных этими способами, не удается достичь низкого остаточного содержания серы в получаемых продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому способу приготовления катализатора является способ приготовления катализатора гидроочистки углеводородного сырья [РФ №2402380, B01J 23/882, B01J 21/02, C10G 45/08, 27.10.2010]. Известный способ приготовления заключается в пропитке оксида алюминия водным раствором биметаллического комплексного соединения [М(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где: L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1, и как минимум одного соединения бора, при этом концентрации биметаллического соединения и соединения бора таковы, чтобы обеспечить в готовом катализаторе 30-45 мас.% биметаллического комплексного соединения и 1,06-3,95 мас.% соединения бора. Пропитку проводят по влагоемкости или из избытка раствора, затем катализатор сушат при 120-220°C.

Основным недостатком прототипа, также как и других известных способов приготовления катализаторов, является высокое содержание серы в гидроочищенных продуктах.

Изобретение решает задачу создания улучшенного способа приготовления катализатора гидроочистки углеводородного сырья, характеризующегося получением катализатора, имеющего оптимальный для гидроочистки химический состав, включающий комплексные соединения молибдена, кобальта и никеля в определенных соотношениях, нанесенные на композитный носитель, в состав которого входит оксид алюминия и аморфный алюмосиликат. Использование в гидроочистке катализатора, приготовленного заявляемым способом, обеспечивает получение нефтепродуктов с низким содержанием серы.

Задача решается приготовлением носителя, содержащего оксид алюминия и 10-50 мас.% аморфного алюмосиликата с массовым отношением Si/Al=0,9, характеризующегося рентгенограммой, содержащей широкий пик в области 16,5-33,5° с максимумом 23,0°, и нанесением на полученный носитель из водного раствора двух биметаллических комплексных соединений [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где: L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1. Нанесение осуществляют пропиткой носителя по влагоемкости, или из избытка раствора, или вакуумной пропиткой, при этом концентрации [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в пропиточном растворе таковы, чтобы обеспечить получение катализатора, содержащего суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] 24,5-39,0 мас.% при массовом отношении [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2]=0,33-3,00. Далее катализатор сушат при 100-250°C. Получаемый катализатор содержит компоненты в следующих концентрациях, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5-39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: МоО3 - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе, СоО - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; Al2O3 - остальное. При этом катализатор имеет объем пор 0,4-0,7 см3/г, удельную поверхность 150-300 м2/г и средний диаметр пор 7-15 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 не менее 1,0 МПа.

Основным отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что получаемый катализатор содержит компоненты в следующих концентрациях, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5-39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: МоО3 - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе СоО - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; Al2O3 - остальное.

Вторым отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что в предлагаемом способе используется носитель, содержащий 10-50% аморфного алюмосиликата с массовым отношением Si/Al=0,9, характеризующийся рентгенограммой, содержащей широкий пик в области 16,5-33,5° с максимумом 23,0°.

Третьим отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что на носитель наносят одновременно два биметаллических комплексных соединения [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], при этом используют пропиточные растворы, содержащие биметаллические соединения в массовых отношениях [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2]=0,33-3,00.

Технический эффект предлагаемого способа приготовления катализатора складывается из следующих составляющих.

1. Заявляемый способ обеспечивает получение катализатора, имеющего химический состав, обуславливающий максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья. Наличие в составе катализатора одновременно двух биметаллических соединений в заявляемых концентрациях и массовых отношениях обеспечивает образование активного компонента, имеющего повышенный уровень активности в реакциях гидрогенолиза сероорганических соединений.

2. Использование для приготовления катализатора носителя, содержащего аморфный алюмосиликат в заявляемых концентрациях, минимизирует нежелательное химическое взаимодействие между наносимыми биметаллическими соединениями и носителем, что способствует сохранению строения этих соединений в составе катализатора и получению компонента, имеющего повышенную активность в реакциях гидроочистки.

3. Используемый для приготовления носителя и катализатора аморфный алюмосиликат с массовым отношением Si/Al=0,9 проявляет мягкие крекирующие свойства, в конечном счете, облегчающие удаление серы в виде сероводорода из различных сероорганических молекул сырья.

Описание предлагаемого технического решения.

Сначала готовят носитель, содержащий аморфный алюмосиликат и оксид алюминия.

К навеске порошка гидроксида алюминия AlOOH, имеющего структуру бемита или псевдобемита, при непрерывном перемешивании в смесителе с Z-образными лопастями последовательно добавляют расчетное количество порошка аморфного алюмосиликата с массовым отношением Si/Al=0,9. Порошок алюмосиликата может быть получен по любой из известных методик, например методике соосаждения из совместных растворов алюминатов и силикатов щелочных металлов, или же методике осаждения силикатов щелочных металлов с гелем, полученным из сульфата или нитрата алюминия, или методике гидролиза элементоорганических соединений кремния и алюминия, или какой-либо другой методике, обеспечивающей получение аморфного алюмосиликата с массовым отношением Si/Al=0,9, характеризующегося на рентгенограмме пиком с максимумом 23,0°. Далее к смеси порошков добавляют водный раствор азотной кислоты и продолжают перемешивание.

Компоненты берут в следующих весовых отношениях гидроксид алюминия : порошок алюмосиликата : вода : азотная кислота =1:0,104-0,940:1,0-1,5:0,033-0,100.

Полученную пасту экструдируют через фильеру с отверстиями, форма и размеры которых обеспечивают получение гранул с поперечным сечением в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат при температуре 100-150°C и прокаливают при температуре 500-600°C.

В результате, получают однородный носитель белого цвета, представляющий собой гранулы с поперечным сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной 2-20 мм. На рентгенограмме носителя сохраняется пик с максимумом 23,0°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,9.

Далее готовят пропиточный раствор с заданными концентрациями и массовыми соотношениями биметаллических комплексных соединений [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2].

Биметаллические соединения синтезируют либо в совместном растворе, либо по отдельности, с последующим смешением растворов в требуемых пропорциях. Синтез биметаллического соединения в растворе осуществляют следующим образом: в воде при перемешивании растворяют требуемое количество лимонной кислоты C6H8O7 или моногидрата лимонной кислоты C6H8O7×H2O. К полученному раствору при перемешивании и нагревании добавляют требуемое количество парамолибдата аммония (NH4)6Mo7O24×4H2O. Перемешивание продолжают до полного растворения компонентов и образования прозрачного раствора. При этом в растворе образуется комплексное соединение Hx-y(NH4)y[Mo4O11(C6H5O7)2], где: x=4, y=0;1;2;3 или 4. Далее к полученному раствору при продолжающемся перемешивании в случае синтеза [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2 добавляют требуемое количество гидроокиси кобальта (II) Со(ОН)2, в случае синтеза [Ni(H2O)х(L)y]2[Мо4О11(C6H5O7)2] добавляют требуемое количество никеля (II) углекислого основного NiCO3·mNi(OH)2·nH2O, в случае совместного синтеза - требуемое количество смеси гидроокиси кобальта (II) Со(ОН)2 и никеля (II) углекислого основного NiCO3·mNi(OH)2·nH2O. Перемешивание продолжают до полного растворения компонентов и образования раствора, не содержащего взвешенных частиц. Далее, в случае отдельного синтеза кобальт- и никельсодержащих соединений их растворы смешивают в требуемых пропорциях. В результате получают раствор коричневого цвета, содержащий [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2].

Далее путем добавления воды, концентрацию компонентов раствора доводят до величины, обеспечивающей получение катализатора, содержащего компоненты в заявляемых концентрациях.

Полученным раствором пропитывают носитель, содержащий аморфный алюмосиликат, при этом используют либо пропитку носителя по влагоемкости, либо из избытка раствора, либо вакуумную пропитку. Пропитку проводят при температуре 15-90°C в течение 5-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора, или вакуумной пропитки, после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора.

После пропитки катализатор сушат на воздухе при температуре 100-250°C.

В результате, получают катализатор, характеристики которого полностью соответствуют заявляемым интервалам.

Далее катализатор испытывают в гидроочистке прямогонного дизельного топлива с содержанием серы 1,45% S и концом кипения 360°C, или вакуумного газойля с содержанием серы 2,68 мас.% S и концом кипения 540°C. Процесс гидроочистки дизельного топлива проводят при температуре 345°C, давлении 3,5 МПа, массовом расходе дизельного топлива 1,5 ч-1, объемном отношении водород/дизельное топливо 400. Гидроочистку вакуумного газойля проводят при 375°C, давлении 6,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 500.

Перед испытаниями катализатор сульфидируют путем его нагрева в токе водорода и сульфидирующей смеси, представляющей собой прямогонное дизельное топливо с содержанием серы 1,45% S, в которое дополнительно добавлен диметилдисульфид с концентрацией 12 г/л. Сульфидирование проводят при 3,5 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 4 ч при 240°C, а затем 4 ч при 260°C и затем 8 ч при 340°C.

Сущность изобретения иллюстрируется следующими примерами:

Пример 1. (Согласно известному техническому решению).

50 г оксида алюминия, сформованного в виде экструдатов диаметром не более 2 мм и длиной не более 10 мм и имеющего удельную поверхность 330 м2/г, объем пор 0,7 см3/г и средний диаметр пор 120 Ǻ пропитывают избытком раствора, биметаллического комплексного соединения который готовят следующим образом:

В 40 см3 дистиллированной воды растворяют при перемешивании 18,0 г моногидрата лимонной кислоты C6H8O7×H2O. К полученному раствору при продолжающемся перемешивании порциями присыпают 24,5 г парамолибдата аммония (NH4)6Mo7O24×4H2O. После полного растворения компонентов в растворе образуется комплексное соединение Н(NH4)3[Mo4O11(C6H5O7)2]. К раствору комплексного соединения молибдена при перемешивании добавляют 18,7 г нитрата кобальта Со(NO3)2×6H2O и перемешивание продолжают до его полного растворения. В растворе образуется биметаллическое комплексное соединение [Со(H2O)2]2[Mo4O11(C6H5O7)2].

После этого к раствору добавляют 4,0 г борной кислоты H3BO3, перемешивание продолжают до отсутствия в растворе видимых взвешенных частиц. Далее объем раствора доводят дистиллированной водой до 73,5 см2.

Пропиточный раствор и носитель контактируют в течение 20 мин, далее избыток раствора сливают, катализатор переносят в чашку Петри и далее помещают в сушильный шкаф, в котором выдерживают 4 ч при 120°C.

Полученный катализатор имеет следующий состав, мас.%: биметаллическое комплексное соединение [Со(H2O)2]2[Mo4O11(C6H5O7)2] - 35 мас.%, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; СоО - 4,2; В2О3 - 2,0; Al2O3 - остальное.

Навеску катализатора, эквивалентную 22 г прокаленного катализатора, смешивают с 50 г карбида кремния (0,2-0,6 мм), помещают в проточный реактор из нержавеющей стали и нагревают в токе водорода и сульфидирующей смеси, представляющей собой прямогонное дизельное топливо с содержанием серы 1,45% S, в которое дополнительно добавлен диметилдисульфид с концентрацией 12 г/л. Сульфидирование проводят при 3,5 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 4 ч при 240°C, а затем 4 ч при 260°C и затем 8 ч при 340°C. Далее катализатор испытывают в гидроочистке прямогонного дизельного топлива с содержанием серы 1,45% S и концом кипения 360°C, или в гидроочистке вакуумного газойля с содержанием серы 2,68 мас.% S и концом кипения 540°C.

Процесс гидроочистки дизельного топлива проводят при температуре 345°C, давлении 3,5 МПа, массовом расходе дизельного топлива 1,5 ч-1, объемном отношении водород/дизельное топливо 400. Гидроочистку вакуумного газойля проводят при 375°C, давлении 6,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 500.

Результаты испытаний приведены в таблице.

Примеры 2-8 иллюстрируют предлагаемое техническое решение.

Пример 2.

Сначала готовят носитель, содержащий 50 мас.% аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 66,7 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 62,5 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,9. К смеси добавляют 150 мл воды и 10,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Весовые отношения компонентов в пасте - гидроксид алюминия: порошок алюмосиликата : вода : азотная кислота =1:0,94:1,5:0,10.

Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°C и прокаливают 4 ч при температуре 550°C. Получают 100 г готового носителя.

Готовят водный раствор, содержащий 8,1 г [Co(H2O)2[Mo4O11(C6H5O7)2] и 24,3 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 60 мл воды при 70°C и перемешивании последовательно растворяют 11,03 г лимонной кислоты C6H8O7, 20,29 г парамолибдата аммония (NH4)6Mo7O24x4H2O, 1,34 г гидроксида кобальта (II) и 5,3 г основного карбоната никеля NiCO3·mNi(OH)2·mH2O. Далее добавлением воды объем раствора доводят до 80 мл. Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)у]2[Mo4O11(C6H5O7)2] в полученном растворе равно 0,33. 100 г носителя пропитывают по влагоемкости 80 мл полученного раствора. Катализатор сушат на воздухе при 120°C. Рентгенограмма полученного катализатора содержит пик с максимумом 23,0°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,9.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)у]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,1; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 18,4; аморфный алюмосиликат - 37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0; суммарно CoO+NiO - 3,6; в том числе, CoO - 0,9; Ni0 - 2,7; аморфный алюмосиликат - 42,0; Al2O3 - остальное. Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 0,33.

Катализатор имеет объем пор 0,7 см3/г, удельную поверхность 300 м2/г и средний диаметр пор 15 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,2МПа.

Далее катализатор тестируют в гидроочистке дизельного топлива и вакуумного газойля аналогично примеру 1. Результаты тестирования приведены в таблице.

Пример 3.

Носитель и катализатор готовят аналогично примеру 2 с той разницей, что пропиточный раствор содержит 24,3 г [Co(H2O)2]2[Mo4O11(C6H5O7)2] и 8,1 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2], при этом массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в пропиточном растворе и готовом катализаторе равно 3.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 18,4; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,1; аморфный алюмосиликат - 37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0; суммарно CoO+NiO - 3,6; в том числе CoO - 2,7; NiO - 0,9; аморфный алюмосиликат - 42,0; Al2O3 - остальное. Катализатор имеет объем пор 0,7 см3/г, удельную поверхность 300 м2/г, средний диаметр пор 15 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,15 МПа.

Результаты тестирования в гидроочистке дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 4.

Сначала готовят носитель, содержащий 10 мас.% аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 120 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 12,5 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,9. К смеси добавляют 120 мл воды и 3,3 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Весовые отношениях компонентов в пасте - гидроксид алюминия:порошок алюмосиликата:вода:азотная кислота=1:0,1:1,2:0,033. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°C и прокаливают 4 ч при температуре 550°C. Получают 100 г готового носителя.

Далее готовят водный раствор, содержащий 48,3 г. [Co(H2O)2]2[Mo4O11(C6H5O7)2] и 16,1 г. [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 50 мл воды при 70°C и перемешивании последовательно растворяют 21,9 г лимонной кислоты C6H8O7, 40,28 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 7,96 г гидроксида кобальта (II) и 3,51 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 70 мл. Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в полученном растворе равно 3.

100 г носителя пропитывают по влагоемкости 70 мл полученного раствора. Катализатор сушат на воздухе при 100°C. Рентгенограмма полученного катализатора содержит пик с максимумом 23,0°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,9.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 29,2; [Ni(H2O)x(L)у]2[Mo4O11(C6H5O7)2] - 9,8; аморфный алюмосиликат - 6,1; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 24,0; суммарно CoO+NiO - 6,0; в том числе, CoO - 4,5; NiO - 1,5; аморфный алюмосиликат - 7,0; Al2O3 - остальное. Катализатор имеет объем пор 0,4 см3/г, удельную поверхность 150 м2/г и средний диаметр пор 7 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,6 МПа.

Результаты тестирования полученного катализатора в гидроочистке дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 5.

Носитель и катализатор готовят аналогично примеру 4 с той разницей, что пропиточный раствор содержит 16,1 г [Co(H2O)2]2[Mo4O11(C6H5O7)2] и 48,3 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2]. Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в пропиточном растворе и в готовом катализаторе равно 0,33.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 9,8; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 29,2; аморфный алюмосиликат - 6,1; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 24,0; суммарно CoO+NiO - 6,0; в том числе CoO - 1,5; NiO - 4,5; аморфный алюмосиликат - 7,0; Al2O3 - остальное.

Катализатор имеет объем пор 0,4 см3/г, удельную поверхность 150 м2/г, средний диаметр пор 7 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,55 МПа.

Результаты тестирования в гидроочистке дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 6.

Носитель, содержащий 10% аморфного алюмосиликата, готовят аналогично примеру 4.

Далее готовят водный раствор, содержащий 36,32 г [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и 36,32 г [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], для чего в 100 мл воды при 70°С и перемешивании последовательно растворяют 24,73 г лимонной кислоты C6H8O7, 45,48 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 11,98 г гидроксида кобальта (II) и 15,83 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 150 мл. Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в полученном растворе равно 1.

Далее катализатор готовят методом вакуумной пропитки, для чего 100 г носителя помещают в колбу Шленка и вакуумируют до остаточного давления 15 Торр, в колбу всасывают 150 мл пропиточного раствора, после чего давление уравнивают с атмосферным. Раствор и носитель контактируют 20 мин при 70°C, после чего избыток раствора сливают и используют для приготовления других партий катализатора. Влажный катализатор сушат при 250°C 4 ч.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 26,64; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 13,32; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 13,32; аморфный алюмосиликат - 5,9; γAl2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; суммарно CoO+NiO - 4,0; в том числе СоО - 2,0; NiO - 2,0; аморфный алюмосиликат - 6,7; Al2O3 - остальное.

Катализатор имеет объем пор 0,5 см3/г, удельную поверхность 200 м2/г, средний диаметр пор 9 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,50 МПа.

Результаты тестирования в гидроочистке дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 7.

Готовят носитель, содержащий 30% аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 93,3 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 37,5 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,9. К смеси добавляют 120 мл воды и 6,5 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Весовые отношениях компонентов в пасте - гидроксид алюминия : порошок алюмосиликата : вода : азотная кислота =1:0,4:1,2:0,065.

Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°C и прокаливают 4 ч при температуре 550°C. Получают 100 г готового носителя.

Далее готовят водный раствор, содержащий 9,08 г [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и 27,24 г [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], для чего в 50 мл воды при 70°C и перемешивании последовательно растворяют 12,36 г лимонной кислоты C6H8O7, 22,72 г парамолибдата аммония (NH4)6Mo7O24x4H2O, 1,5 г гидроксида кобальта (II) и 5,94 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 70 мл. Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в полученном растворе равно 0,33.

Полученным раствором пропитывают по влагоемкости 100 г носителя, катализатор сушат при 120°C.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 26,64; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,66; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 19,98; аморфный алюмосиликат - 21,9; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; суммарно CoO+NiO - 4,0; в том числе СоО - 1,0; NiO - 3,0; аморфный алюмосиликат - 25,0; Al2O3 - остальное.

Катализатор имеет объем пор 0,45 см3/г, удельную поверхность 180 м2/г, средний диаметр пор 10 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,45 МПа.

Результаты тестирования в гидроочистке дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 8.

Носитель готовят аналогично примеру 7.

Далее готовят водный раствор, содержащий 54,48 г [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и 18,16 г [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], для чего в 100 мл воды при 70°C и перемешивании последовательно растворяют 24,72 г лимонной кислоты C6H8O7, 45,44 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 9,0 г гидроксида кобальта (II) и 3,66 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 150 мл. Массовое отношение Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в полученном растворе равно 3.

Проводят пропитку из избытка раствора, для чего 100 г носителя помещают в наклонную колбу роторного аппарата, приливают к нему 150 мл пропиточного раствора и пропитку проводят при 50°C и вращении 2 об/мин в течение 1 ч. Далее избыток раствора сливают, катализатор сушат при 120°C.

Полученный катализатор содержит, мас.%: суммарно Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 26,64; в том числе Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 19,98; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,66; аморфный алюмосиликат - 21,9; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; суммарно CoO+NiO - 4,0; в том числе СоО - 3,0; NiO - 1,0; аморфный алюмосиликат - 25,0; Al2O3 - остальное.

Катализатор имеет объем пор 0,5 см3/г, удельную поверхность 185 м2/г, средний диаметр пор 9 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,35 МПа.

Результаты тестирования в гидроочистке дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Таблица
Остаточное содержание серы в продуктах после гидроочистки углеводородного сырья
Катализатор из примера 1 (прототип) 2 3 4 5 6 7 8
Остаточное содержание серы в продуктах, ppm
Гидроочистка дизельного топлива* 20 10 10 9 9 8 8 9
Гидроочистка вакуумного газойля** 340 300 280 260 260 205 250 240
* - Гидроочистку дизельного топлива (1,45% серы, к.к. 360°C) проводят при температуре 345°C, давлении 3,5 МПа, массовом расходе дизельного топлива 1,5 ч-1, объемном отношении водород/дизельное топливо 400.

** - Гидроочистку вакуумного газойля (2,68% серы, к.к. 540°C) проводят при 375°C, давлении 6,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 500.

Таким образом, как видно из приведенных примеров, предлагаемый способ приготовления катализатора позволяет получать катализаторы, имеющие высокую активность в гидроочистке углеводородного сырья, значительно превосходящую активность катализатора, приготовленного по способу-прототипу.

Источник поступления информации: Роспатент

Показаны записи 131-135 из 135.
18.05.2018
№218.016.51a1

Способ приготовления катализатора

Изобретение относится к области приготовления катализаторов, которые могут быть использованы в процессах окислительной конверсии углеводородов и селективного окисления кислородсодержащих органических соединений, гидрирования оксидов углерода и ненасыщенных углерод-углеродных и...
Тип: Изобретение
Номер охранного документа: 0002653360
Дата охранного документа: 08.05.2018
09.06.2018
№218.016.6022

Катализатор для окислительной конверсии этана в этилен и способ его получения

Изобретение относится к катализаторам для окислительных превращений углеводородов, а также к способу получения данных катализаторов. Более конкретно изобретение относится к оксидным промотированным MoVTeNb катализаторам для окислительной конверсии этана в этилен, наиболее многотоннажный продукт...
Тип: Изобретение
Номер охранного документа: 0002656849
Дата охранного документа: 07.06.2018
28.07.2018
№218.016.7630

Блок каталитической ароматизации легких углеводородов и способ его работы

Изобретение относится к блоку каталитической ароматизации легких углеводородов, включающему нагреватель, каталитический реактор, рекуперационный теплообменник, отличающемуся тем, что в реакторе расположены по меньшей мере одна зона катализа и по меньшей мере одна зона окисления, разделенные...
Тип: Изобретение
Номер охранного документа: 0002662442
Дата охранного документа: 26.07.2018
05.09.2018
№218.016.8305

Способ приготовления катализатора для конверсии углеводородных топлив в синтез-газ и процесс конверсии с применением этого катализатора

Изобретение относится к катализаторам, способам их приготовления и применения в процессах конверсии различных видов углеводородных топлив, таких как природный газ, дизельное топливо, сжиженный углеводородный газ (СУГ), в синтез-газ. Описан способ приготовления катализатора конверсии...
Тип: Изобретение
Номер охранного документа: 0002665711
Дата охранного документа: 04.09.2018
Показаны записи 171-180 из 195.
05.03.2020
№220.018.08b4

Способ получения кислородсодержащих органических соединений с1-с4

Настоящее изобретение относится к способу получения кислородсодержащих органических соединений С1-С4 путем газофазного окисления н-бутансодержащей фракции кислородом и/или кислородсодержащим газом при повышенном давлении. При этом окисление проводят при температуре 180-300°С в проточном...
Тип: Изобретение
Номер охранного документа: 0002715728
Дата охранного документа: 03.03.2020
05.03.2020
№220.018.0903

Способ получения уксусной кислоты и метилэтилкетона

Изобретение относится к способу получения уксусной кислоты и метилэтилкетона в процессе реакционно-ректификационного разделения смесей сложного состава, полученных в результате жидкофазного окисления фракции н-бутана и содержащих кислоты С1-С4, спирты С1-С4, сложные эфиры С2-С6, карбонильные...
Тип: Изобретение
Номер охранного документа: 0002715698
Дата охранного документа: 03.03.2020
09.03.2020
№220.018.0ad5

Способ получения малосернистого дизельного топлива и малосернистого бензина

Изобретение относится к каталитическим способам переработки смесевых дизельных фракций первичного и смеси дизельных и бензиновых фракций вторичного происхождения с высоким содержанием серы с получением смеси сверхмалосернистых фракций бензиновых и дизельных углеводородов. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002716165
Дата охранного документа: 06.03.2020
30.05.2020
№220.018.2253

Носитель для катализатора гидроочистки

Изобретение относится к носителю для катализатора гидроочистки углеводородного сырья, включающему в свой состав, мас. %: диоксид кремния SiO, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия AlBO со структурой норбергита – 5,0-25,0, γ-AlO –...
Тип: Изобретение
Номер охранного документа: 0002722181
Дата охранного документа: 28.05.2020
25.06.2020
№220.018.2b12

Способ получения малосернистого дизельного топлива

Изобретение относится к способу, заключающемуся в превращении смесевых и прямогонных дизельных фракций с высоким содержанием серы при температуре 340-380°C, давлении 3,5-8,0 МПа, массовом расходе сырья 1,0-2,5 ч, объемном отношении водород/сырье 300-500 м/м в присутствии гетерогенного...
Тип: Изобретение
Номер охранного документа: 0002724347
Дата охранного документа: 23.06.2020
27.06.2020
№220.018.2b88

Катализатор гидроочистки дизельного топлива

Изобретение относится к катализаторам гидроочистки для получения дизельного топлива с низким содержанием серы. Катализатор гидроочистки дизельного топлива включает в свой состав соединения кобальта, молибдена, фосфора и носитель. Катализатор содержит, мас. %: [Со(HO)(CHO)][MoO(CHO)] - 7,7-32,0;...
Тип: Изобретение
Номер охранного документа: 0002724773
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2c1f

Способ гидроочистки дизельного топлива

Изобретение относится к способам гидроочистки дизельных топлив, основанных на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390С, давлении 3-9 МПа, объёмном расходе сырья 1,0-2,5 ч, объёмном отношении водород/сырьё...
Тип: Изобретение
Номер охранного документа: 0002724613
Дата охранного документа: 25.06.2020
06.07.2020
№220.018.2fe4

Способ реактивации катализатора гидроочистки

Предложен способ реактивации катализатора гидроочистки, по которому отработанный катализатор после окислительной регенерации пропитывают раствором лимонной и ортофосфорной кислот в смеси воды и бутилдигликоля, имеющим концентрации бутилдигликоля 10-20 об.%, лимонной кислоты 0,42-1,09 моль/л,...
Тип: Изобретение
Номер охранного документа: 0002725629
Дата охранного документа: 03.07.2020
15.07.2020
№220.018.3286

Способ приготовления носителя для катализатора гидроочистки

Изобретение относится к способу приготовления носителя для катализаторов гидроочистки, содержащего, мас.%: диоксид кремния SiO - 2,0-20,0, борат алюминия AlBO со структурой норбергита - 5,0-25,0, γ-AlO - остальное. При этом входящий в состав носителя диоксид кремния SiO представляет собой...
Тип: Изобретение
Номер охранного документа: 0002726374
Дата охранного документа: 13.07.2020
18.07.2020
№220.018.3469

Катализатор гидроочистки дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива с низким содержанием серы. Описан катализатор, содержащий, мас.%: [Со(НО)(СНО)][MoO(СНО)] - 11,42-18,9, Co[HPMoO] - 12,1-22,6 и (NH)[Mo(CHO)O] - 3,25-4,73; носитель - остальное, содержащий, мас.%: в пересчете на оксиды...
Тип: Изобретение
Номер охранного документа: 0002726634
Дата охранного документа: 15.07.2020
+ добавить свой РИД