×
27.11.2014
216.013.0b16

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АТОМНОГО СОСТАВА АКТИВНЫХ НАНОПРИМЕСЕЙ В ЖИДКОСТЯХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред. Способ определения атомного состава активных примесей в жидких средах заключается в подготовке анализируемого объекта и размещении его в вакууме. Затем осуществляют облучение поверхности пучком заряженных частиц и регистрацию вторичных частиц, по которым определяют состав атомов поверхности. При этом подготовку анализируемого объекта осуществляют подготовкой поверхности полупроводниковой пластины химическим травлением, обработкой в перекисно-аммиачном растворе и отмывкой в деионизованной воде. На подготовленную поверхность чистой полупроводниковой пластины наносят каплю анализируемой жидкости размером не менее микрона на поверхность, затем ее удаляют, а для анализа облучают пучком заряженных частиц след удаленной капли. Технический результат направлен на повышение экспрессности анализа, а также на улучшение предела обнаружения, в частности, не менее чем 10-100 раз.
Основные результаты: Способ определения атомного состава активных примесей в жидких средах, заключающийся в подготовке анализируемого объекта, в размещении его в вакууме, в облучении поверхности пучком заряженных частиц и регистрации вторичных частиц, в определении по вторичным частицам состава атомов поверхности, отличающийся тем, что подготовку анализируемого объекта осуществляют подготовкой поверхности полупроводниковой пластины химическим травлением, обработкой в перекисно-аммиачном растворе, отмывкой в деионизованной воде, нанесением капли анализируемой жидкости размером не менее микрона на поверхность чистой полупроводниковой пластины и последующим ее удалением, а для анализа облучают пучком заряженных частиц след удаленной капли.

Изобретение относится к области нано- и микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред.

Известен способ определения атомного состава активных примесей в жидких средах, заключающийся в подготовке анализируемой жидкости и определении его состава течением жидкостных носителей или воздействием химическими реагентами [Шаповалова Е.Н., Пирогов А.В. Хроматографические методы анализа. Методическое пособие для специального курса / Отв. ред. чл.-корр. РАН, проф. О.А.Шпигун. - М.: Изд. МГУ им. М.В.Ломоносова, 2007. - 109 с. Гольберт К.А., Вигдергауз М.С. Курс газовой хроматографии, 2-изд., М., 1974. Жидкостная колоночная хроматография, под ред. 3. Дейла, К.Мацека, Я.Янака, пер. с англ., т.1-3, М., 1978].

Недостатком известных хроматографических и химических способов является соответственно избирательный подбор носителей или избирательное действие реагентов на примеси и большая трудность анализа малых количеств. Для каждого типа примеси необходимо провести отдельный анализ. Такие анализы проводятся при известном предлагаемом наборе примесей и не позволяют выполнять интегральный анализ по определению всех типов примесей.

Наиболее близким к предлагаемому изобретению является способ определения атомного состава активных примесей в жидких средах, заключающийся в подготовке анализируемой жидкости в замороженной твердой фазе, в размещении его в вакууме, в облучении поверхности пучком заряженных частиц, в регистрации вторичных частиц и определении по вторичным частицам состава атомов поверхности [Черепин В.Т., Васильев М.А. Методы и приборы для анализа поверхности материалов. Справочник. - Киев: Наукова думка, 1982. - 600 с.].

Недостатками известного способа являются большая трудоемкость и стоимость анализа из-за необходимости замораживания анализируемого объекта и устройств для этой цели в аналитической камере спектрометра для регистрации вторичных частиц, а также большое время подготовки объекта анализа, трудности транспортировки анализируемой жидкости и подготовки объекта анализа вследствие необходимости обеспечения особо чистых условий. Другим недостатком является плохой предел обнаружения примесей из-за их распределенности в замороженном объекте по объему.

Технический результат направлен на уменьшение стоимости и повышение экспрессности анализа, а также на улучшение предела обнаружения.

Технический результат достигается тем, что в способе определения атомного состава активных примесей в жидких средах, заключающемся в подготовке анализируемого объекта, в размещении его в вакууме, в облучении поверхности пучком заряженных частиц и регистрации вторичных частиц, в определении по вторичным частицам состава атомов поверхности, при этом подготовку анализируемого объекта осуществляют подготовкой поверхности полупроводниковой пластины химическим травлением, обработкой в перекисно-аммиачном растворе, отмывкой в деионизованной воде, нанесением капли анализируемой жидкости размером не менее микрона на поверхность чистой полупроводниковой пластины и последующим ее удалением, а для анализа облучают пучком заряженных частиц след удаленной капли.

Физическая сущность предлагаемого способа определения атомного состава активных примесей в жидких средах (далее - способа) основана на адсорбции активных примесей жидких сред на поверхности чистых полупроводниковых пластин, что было установлено авторами экспериментально. Из практики известно и исследованиями ряда технологических процессов производства микроэлектроники авторами установлено, что при взаимодействии технологических пластин с жидкими технологическими средами (химобработка, обработка в растворах, отмывка) все примеси, содержащиеся на поверхности пластины, удаляются вместе с некоторым слоем поверхности (химтравление). При этом на поверхности пластин остаются радикалы кислот, растворов, воды, и в том числе и примеси, содержащиеся в жидких средах. При наличии загрязнений в кислотных растворах на поверхности пластин остаются фоновые загрязнения, концентрация которых зависит от концентрации их в травителе и от электролитической упругости растворения их с поверхности в травитель. В результате обработки в перекисно-аммиачном растворе и отмывки в деионизованной воде все радикалы удаляются с поверхности. Авторами экспериментально установлено, что ряд загрязняющих примесей, особенно адсорбционно-активные, остаются на поверхности и после обработки в перекисно-аммиачном растворе и отмывки в деионизованной воде. Хемосорбированные примеси имеют энергию связи с поверхностью единицы электронвольт (в среднем 3-6 эВ), не взаимодействуют с водой и не удаляются деионизованной водой. Это свойство примесей, вредное для технологии производства микросхем и губительное для электронной нанотехнологии, является полезной для выявления и анализа загрязняющих микропримесей на поверхности технологических пластин и для контроля качества технологических жидких сред.

Экспериментальными исследованиями методами вторично-ионной масс-спектроскопии, спектроскопии обратно рассеянных ионов низких энергий, оже-спектроскопии и электронной микроскопии показано, что при нанесении капли жидкости на поверхность чистой технологической пластины все типы активных примесей, вредных в производстве микросхем, адсорбируются на поверхности пластины. Наиболее распространенными примесями являются атомы щелочных и щелочноземельных металлов (К, Na, Са, Ва, Mg и т.д.). Как показали результаты исследований, более вредными являются атомы щелочноземельных металлов. Атомы щелочных металлов обладают большей миграционной способностью по поверхности и при различных технологических операциях (при энергетических воздействиях) вытесняются из активных участков микросхемы на границы или за пределы и оказывают меньшее вредное воздействие на работу микросхемы. Установлено также, что контактирование жидкой среды, в том числе и деионизованной воды, с металлом приводит к растворению ионов металла в жидкости с последующей хемосорбцией на поверхности технологической пластины.

Как следует из теории адсорбции и установлено экспериментально, примеси из жидкой капли адсорбируются не только те, которые находятся в слое капли на границе с поверхностью пластины, но и некоторая часть из объема капли. Концентрация примесей, адсорбирующихся на поверхности из объема, определяется термодинамическим равновесием процессов адсорбции и электролитической упругости растворения примесей с поверхности. Для примесей металлов этот процесс во многих случаях приводит к геттерированию примесей поверхностью.

При содержаниях примесей в жидкостях на уровне возможностей обнаружения спектрометрами вторично-ионной-масс-спектроскопии (1017-1016 ат/см3) адсорбированные примеси из них на поверхности чистых кремниевых пластин обнаруживались методом оже-спектроскопии (предел обнаружения 1020-1019 ат/см3). Это позволяет заключить, что концентрирование примесей на поверхности в результате адсорбции происходит не хуже, чем в 100-1000 раз и зависит от величины капли времени выдержки и физико-химических факторов поверхностных процессов взаимодействия. Так как глубина анализируемого слоя метода оже-спектроскопии составляет 5-10 Ангстрем, а метода спектроскопии обратно рассеянных ионов составляет 1 атомный слой, при этом предел обнаружения составляет сотые доли монослоя, то с учетом геттерирования могут быть обнаружены примеси полупроводниковой чистоты. Методом вторично-ионной масс-спектроскопии обнаруживаются еще более меньшие концентрации, то есть ниже предела обнаружения спектрометра в 100-1000 раз.

Порядок осуществления способа. Для реализации способа необходимы кремниевые или другие полупроводниковые пластины, для которых определены условия получения наиболее чистой поверхности (с чистотой 1013 ат/см3) или чище на порядок требований анализа. В качестве аналитического оборудования используется спектрометр для анализа элементного состава поверхности (вторично-ионный масс-спектрометр, спектрометр обратно рассеянных ионов низких энергий, оже-спектрометр, рентгено-электронный спектрометр), удовлетворяющий требованиям анализа, а также химическая лаборатория для подготовки поверхности полупроводниковой пластины для получения на его поверхности следа капли анализирующей жидкости. При анализе технологических процессов используются чистые технологические пластины или поверхности других чистых объектов. Подготовка поверхности пластин может быть осуществлена способами исследуемой технологии производства. Анализируемая жидкость в виде капли или в другом виде наносится на поверхность пластины. Размер капли должен быть не менее диаметра зондирующего пучка спектрометра (1 мкм - 1 мм). В экспериментальных исследованиях время выдержки капли составляло секунды - минуты. Затем капля удалялась встряхиванием. В условиях работы с чистыми (особо чистыми) материалами производится загрузка исследуемого объекта (пластины со следом капли) в аналитическую камеру спектрометра и производится анализ состава в известном порядке, определенном для спектрометра техническим описанием.

Пластина с подготовленным следом для анализа может использоваться длительное время без искажений результата. Предлагаемый способ эффективен также для анализа примесей в труднозамораживаемых жидкостях. Экспериментами установлено, что примесные следы на полупроводниковых пластинах оставляют практически все жидкости.

Сопоставительный анализ с прототипом показал, что стоимость анализа предлагаемым способом меньше на величину затрат на замораживание анализируемого объекта, состоящих из стоимости жидкого азота и рабочего времени на реализацию режима охлаждения. Кроме того, промышленные спектрометры не оснащаются устройствами охлаждения анализируемого объекта в измерительной камере. Известный способ (по прототипу) осуществляется только на экспериментальных устройствах. Для промышленной реализации необходима разработка таких устройств для оснащения промышленных спектрометров.

Очевидно, что отсутствие необходимости замораживания объекта позволяет уменьшить время анализа в сравнении с прототипом более чем в полтора-два раза. Эффект геттерирования активных примесей на поверхности пластины из анализируемой жидкости увеличивает поверхностную концентрацию на пластине в сравнении с объемным содержанием в жидкости не менее чем в 10-100 раз и, соответственно, снижает во столько же раз предел обнаружения примесей в анализируемой жидкости.

Способ определения атомного состава активных примесей в жидких средах, заключающийся в подготовке анализируемого объекта, в размещении его в вакууме, в облучении поверхности пучком заряженных частиц и регистрации вторичных частиц, в определении по вторичным частицам состава атомов поверхности, отличающийся тем, что подготовку анализируемого объекта осуществляют подготовкой поверхности полупроводниковой пластины химическим травлением, обработкой в перекисно-аммиачном растворе, отмывкой в деионизованной воде, нанесением капли анализируемой жидкости размером не менее микрона на поверхность чистой полупроводниковой пластины и последующим ее удалением, а для анализа облучают пучком заряженных частиц след удаленной капли.
Источник поступления информации: Роспатент

Показаны записи 91-99 из 99.
25.08.2017
№217.015.b44a

Устройство электропитания носимых радиостанций

Изобретение относится к области электротехники и может быть использовано в качестве устройства для обеспечения надежного электропитания постоянным током носимых радиостанций, транспортных средств и др. Технический результат направлен на повышение зарядовой емкости аккумуляторных батарей систем...
Тип: Изобретение
Номер охранного документа: 0002614036
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b958

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей и атомно-силовой микроскопии. Магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных...
Тип: Изобретение
Номер охранного документа: 0002615052
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.ba8b

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой соединена с магнитопрозрачной...
Тип: Изобретение
Номер охранного документа: 0002615708
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.c554

Способ времяпролетного масс-разделения ионов в радиочастотном линейном электрическом поле и устройство для его осуществления

Изобретение относится к области масс-спектрометрии и направлено на совершенствование методов и устройств масс-разделения по времени пролета в линейных высокочастотных полях. Технический результат - повышение разрешающей способности и решение проблемы конструктивного совмещения устройств ввода и...
Тип: Изобретение
Номер охранного документа: 0002618212
Дата охранного документа: 03.05.2017
29.12.2017
№217.015.f05b

Способ увеличения чувствительности магнитоуправляемых коммутаторов

Изобретение относится к области коммутаторов электрического тока, управляемых внешним магнитным полем: магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов и переключателей, и может быть использовано для улучшения эксплуатационных и потребительских свойств данных...
Тип: Изобретение
Номер охранного документа: 0002629002
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.010f

Двухколлекторный металлополупроводниковый прибор

Изобретение относится к области магнитоэлектроники, а именно к преобразователям магнитного поля в электрический сигнал, и может быть использовано в различных электронных устройствах, предназначенных для усиления и генерации электрических сигналов, защиты входных цепей радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002629712
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
04.04.2018
№218.016.36c8

Эмиттер с отрицательным электронным сродством

Использование: для применения в фотоэлектронных преобразователей в инфракрасном диапазоне спектра. Сущность изобретения заключается в том, что эмиттер с отрицательным электронным сродством для фотоэлектронного преобразователя инфракрасного диапазона, содержащий прозрачное окно, полупрозрачную...
Тип: Изобретение
Номер охранного документа: 0002646527
Дата охранного документа: 05.03.2018
Показаны записи 101-110 из 125.
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
04.04.2018
№218.016.36c8

Эмиттер с отрицательным электронным сродством

Использование: для применения в фотоэлектронных преобразователей в инфракрасном диапазоне спектра. Сущность изобретения заключается в том, что эмиттер с отрицательным электронным сродством для фотоэлектронного преобразователя инфракрасного диапазона, содержащий прозрачное окно, полупрозрачную...
Тип: Изобретение
Номер охранного документа: 0002646527
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.4f20

Имитатор дорожный тренажёра транспортного средства

Изобретение относится к области организации дорожного движения, в частности к техническим средствам обучения вождению автотракторной техники. Имитатор дорожный содержит кабину автомобиля, рулевую колонку, органы управления автомобилем, расположенные в кабине, кресло водителя, микропроцессорное...
Тип: Изобретение
Номер охранного документа: 0002652696
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4f31

Электронно-лучевое запоминающее устройство

Изобретение относится к области вакуумной эмиссионной электроники и вычислительной техники и предназначено для записи, хранения и считывания информации. По принципу действия устройство относится к эмиссионной электронике, а по результатам действия - к постоянным запоминающим устройствам....
Тип: Изобретение
Номер охранного документа: 0002652590
Дата охранного документа: 27.04.2018
10.05.2018
№218.016.4f37

Устройство трансформации величины постоянного напряжения

Предлагаемое изобретение относится к области электротехники и может быть использовано как радиоэлектронное и электротехническое устройство для повышения величины напряжения постоянного тока. Технический результат направлен на обеспечение преобразования первичного напряжения электростатического...
Тип: Изобретение
Номер охранного документа: 0002652589
Дата охранного документа: 27.04.2018
19.07.2018
№218.016.72a0

Пирофосфатно-аммонийный электролит контактного серебрения

Изобретение относится к области нанесения серебряных покрытий на медь и ее сплавы и может быть использовано в технологии электронных приборов, радиотехнической промышленности для нанесения декоративных покрытий, для серебрения волноводов и изделий сложной конфигурации, в качестве электролита...
Тип: Изобретение
Номер охранного документа: 0002661644
Дата охранного документа: 18.07.2018
26.06.2019
№219.017.9287

Тренажер подготовки специалистов связи

Предлагаемое изобретение относится к области радиосвязи и направлено на сокращение сроков подготовки специалистов связи. Технический результат предлагаемого изобретения направлен на приобретение специалистами навыков обеспечения связи в сложных условиях, приближенных к реальным, на этапе...
Тип: Изобретение
Номер охранного документа: 0002692266
Дата охранного документа: 24.06.2019
28.06.2019
№219.017.9962

Нагреваемая аккумуляторная батарея

Изобретение относится к области электротехники, а именно к нагреваемой аккумуляторной батарее, и может быть использовано для повышения готовности транспортных средств в условиях низких температур. Нагреваемая аккумуляторная батарея содержит корпус, блоки положительных и отрицательных...
Тип: Изобретение
Номер охранного документа: 0002692694
Дата охранного документа: 26.06.2019
03.07.2019
№219.017.a429

Способ очистки металлургического кремния от примесей

Изобретение относится к очистке металлургического кремния до степени чистоты солнечного кремния. Сущность изобретения заключается в расплавлении кремния в вакуумной камере и регулировке температуры расплава, при этом обеспечивается давление порядка 0,0001 бар и поддерживается температура...
Тип: Изобретение
Номер охранного документа: 0002693172
Дата охранного документа: 01.07.2019
+ добавить свой РИД