×
27.11.2014
216.013.0ab0

Результат интеллектуальной деятельности: СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова, например лейкосапфира, рубина, алюмоиттриевого граната, которые могут быть использованы в приборостроении, машиностроении, термометрии, химической промышленности. Способ включает формирование столбика расплава 5 между затравкой 7 и верхним торцом формообразователя, который снабжен вертикальным кольцевым питающим капилляром 3 постоянного сечения и, по крайней мере, одним вертикальным каналом 4 малого диаметра, выполненным в верхней части формообразователя. В процессе выращивания кристалла 6 расстояние от верхнего торца формообразователя до уровня расплава Н поддерживают не более 0,8h, а питающий капилляр 3 выполняют длиной L, определяемой из соотношения 2,5h>L>h, где h - высота подъема расплава в капилляре. Технический результат - стабильность процесса выращивания профилированных кристаллов длиной до 500 мм и более с продольными каналами малого диаметра. 1 ил.
Основные результаты: Способ выращивания профилированных кристаллов тугоплавких соединений с продольными каналами малого диаметра, включающий формирование столбика расплава между затравкой и верхним торцом формообразователя, снабженного вертикальным кольцевым питающим капилляром постоянного сечения и, по крайней мере, одним вертикальным каналом малого диаметра, выполненным в верхней части формообразователя, отличающийся тем, что в процессе выращивания кристалла расстояние от верхнего торца формообразователя до уровня расплава Н поддерживают не более 0,8h, а питающий капилляр выполняют длиной L, определяемой из соотношения 2,5h>L>h, где h - высота подъема расплава в капилляре.

Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений по способу Степанова, например лейкосапфира, рубина, алюмоиттриевого граната и других тугоплавких соединений, которые могут быть использованы в приборостроении, машиностроении, термометрии, химической промышленности.

Известно устройство и способ получения профилированных кристаллов в виде труб из расплава на торце формообразователя (А.с. СССР №1592414, МПК C30B 15/34, заявл. 26.11.86, опубл. 15.09.90, бюл. №34), в котором используют формообразователь с кольцевым питающим капилляром и одним вертикальным каналом, выполненным в верхней части формообразователя. К недостаткам такого устройства следует отнести невозможность на практике, при малом диаметре вертикального канала, получения кристаллов с продольными каналами длиной более 40 мм, поскольку в процессе выращивания внутренний мениск продольного канала или схлопывается, или разрывается.

Наиболее близким техническим решением, взятым за прототип, является устройство, позволяющее реализовать способ получения профилированных кристаллов (Патент Украины №36892, МПК C30B 15/34, заявл. 22.02.2000, опубл. 16.04.2001, бюл. №3, 2001), в котором получение кристаллов с продольными каналами малого диаметра осуществляют с использованием формообразователя, состоящего из внешнего и внутреннего элементов с капиллярным зазором между ними, причем внутренний элемент (фиксатор) изготовлен из несмачиваемого расплавом материала и вставлен в вертикальный канал малого диаметра, выполненный в верхней части внутреннего элемента формообразователя. Образование продольных каналов малого диаметра в выращиваемом кристалле, как заявляют авторы, осуществляется за счет того, что расплав не смачивает фиксатор (фиг.2 в указанном патенте). Однако данное изобретение не позволяет устойчиво получать кристаллы с продольными каналами, так как предлагаемый авторами в качестве несмачиваемого материала вольфрам, как показала практика, при выращивании кристаллов смачивается расплавом и в силу этого процесс выращивания становится трудновоспроизводимым и даже невозможным.

Задача и обеспечиваемый изобретением технический результат - стабильность процесса выращивания профилированных кристаллов длиной до 500 мм и более с продольными каналами малого диаметра.

Поставленная задача и указанный технический результат достигаются тем, что в способе выращивания профилированных кристаллов тугоплавких соединений с продольными каналами малого диаметра, включающем формирование столбика расплава между затравкой и верхним торцом формообразователя, снабженным вертикальным кольцевым питающим капилляром постоянного сечения и, по крайней мере, одним вертикальным каналом малого диаметра, выполненным в верхней части формообразователя, согласно изобретению в процессе выращивания кристалла расстояние от верхнего торца формообразователя до уровня расплава Hэфф поддерживают не более 0,8h, а питающий капилляр выполняют длиной L, определяемой из соотношения 2,5h>L>h, где h - высота подъема расплава в капилляре.

Высоту подъема расплава в капилляре можно определить по известной формуле Жюрена h=2σ·cos Ө/ρgr, где

σ - коэффициент поверхностного натяжения жидкости,

Ө - угол смачивания расплавом материала формообразователя,

ρ - плотность расплава,

g - ускорение силы тяжести,

r - радиус или ширина капилляра.

Схлопывание продольного отверстия в растущем кристалле происходит вследствие того, что сила, воздействующая на расплав, обусловленная смачиванием расплавом материала формообразования, направлена в сторону оси продольного отверстия в кристалле, и любое дополнительное воздействие на расплав, например вибрация или изменение температурного режима, приводит к схлопыванию отверстия в кристалле. Чем меньше диаметр отверстия в кристалле, тем больше сила «схлопывания» и тем труднее вырастить такой кристалл.

Поставленная авторами задача решалась путем уменьшения силы «схлопывания» за счет увеличения сопротивления прохождению расплава в питающем капилляре, конкретно, за счет увеличения его длины.

Заявляемое изобретение поясняется чертежом, на котором схематично изображен в разрезе формообразователь для выращивания профилированных кристаллов с продольными капиллярными каналами малого диаметра, а также расплав и растущий кристалл.

Формообразователь для выращивания профилированных кристаллов, с помощью которого реализуется заявляемый способ, выполнен из внешнего 1 и внутреннего 2 элементов с кольцевым питающим капилляром 3 и вертикальным каналом 4 малого диаметра, выполненным в верхней части формообразователя. Рост кристалла 6 осуществляют на затравку 7 из столбика расплава 5 на верхнем торце формообразователя.

Заявляемый способ осуществляется следующим образом.

Камеру, в которой проводят выращивание кристалла, наполняют инертным газом, затем расплавляют загрузку в тигле и погружают нижний торец формообразователя в расплав. Расстояние от уровня расплава до верхнего торца формообразователя составляет Нэфф. Расплав за счет капиллярных сил поднимется по питающему капилляру 3 к верхнему торцу формообразователя. Далее опускают затравку 7 в виде трубки до касания верхнего торца формообразователя, производят затравление и включают перемещение затравки вверх. Из столбика расплава 5 начинается рост стержня 6, диаметр которого практически равен диаметру верхнего торца формообразователя, с продольным капиллярным каналом, соответствующим вертикальному каналу 4 малого диаметра, выполненному в верхней части формообразователя.

Поддерживая в предлагаемом диапазоне соотношение между Нэфф, длиной питающего капилляра L и высотой подъема расплава в капилляре h, тем самым обеспечиваем минимальную величину силы «схлопывания» и практически исключаем схлопывание продольных каналов диаметром от 0,5 мм до 1,2 мм.

Когда величина Нэфф составляет более 0,8h, то, как показывает практика, расплав либо может не подняться к верхнему торцу формообразователя из-за высокого сопротивления питающего капилляра прохождению по нему расплава, обусловленного повышенной длиной питающего капилляра, либо время его прохождения до верхнего торца формообразователя будет недопустимо долгим - более 30 минут.

Если длина питающего капилляра L меньше h, то сила «схлопывания» превалирует над силой сопротивления прохождению расплава в питающем капилляре, возникающей из-за вязкости расплава, увеличивается вероятность схлопывания в кристалле продольного канала малого диаметра при вибрациях или изменениях температурного режима.

Если длина питающего капилляра L составляет более 2,5h, то расплав либо не доходит до рабочего торца формообразователя из-за большого сопротивления прохождению расплава в питающем капилляре, либо время его прохождения до верхнего торца формообразователя будет недопустимо долгим - более 40 минут.

В результате использования предлагаемого способа практически исключается «схлопывание» продольных каналов и имеется возможность выращивания кристаллов достаточно большой длины (500 мм и более) с продольными каналами диаметром от 0,5 мм до 1,5 мм.

Пример конкретной реализации изобретения.

Эксперименты проводили на установке для выращивания кристаллов типа СЗВН-20.800/22-И1 с графитовой тепловой зоной. Формообразователь и тигель изготовили из молибдена. Диаметр тигля составлял 70 мм, глубина - 65 мм. Формообразователь имел верхний торец диаметром 12 мм, в котором выполнено по оси вертикальное отверстие диаметром 0,8 мм, т.е. формообразователь предназначен для выращивания стержня диаметром 12 мм с продольным каналом диаметром 0,8 мм. Высота формообразователя составляла 60 мм. При погружении формообразователя на 30 мм величина Нэфф равнялась 30 мм. Ширина питающего капилляра равнялась 1 мм. Высота подъема расплава h в таком капилляре составляет 43 мм, т.е. Нэфф=30 мм <0,8h=34,4 мм. Питающий капилляр L выполнен длиной 1,5h=64 мм. Загрузка тигля составляла 300 г оксида алюминия (бой кристаллов, полученных методом Вернейля). Выращивание кристаллов осуществляли со скоростью 0,8-1,2 мм/мин в среде инертного газа аргона с избыточным давлением 0,05 кгс/см2.

В результате выращивали стержни диаметром 12 мм и длиной до 500 мм с продольными каналами диаметром 0,8 мм.

Было проведено: 1 серия экспериментов с формообразователем-прототипом; 4 серии экспериментов с формообразователями по предлагаемому изобретению, всего 30 циклов выращивания.

Во время первой серии, состоящей из 5 циклов выращивания, проводилось пробное выращивание кристаллов по методике прототипа. В отверстии 4 внутреннего элемента формообразователя на плотной посадке фиксировался вольфрамовый стержень диаметром 0,8 мм, который выступал над верхним торцом формообразователя на 0,5-3 мм (в различных экспериментах). Все попытки получить стержень с продольным отверстием закончились неудачей из-за чрезвычайной неустойчивости процесса выращивания. В результате получали только сплошной стержень.

Во время второй серии из 5 циклов Нэфф=0,9 h=38,7 мм, где h=43 мм. В этом случае расплав во всех 5-ти экспериментах не поднялся к верхнему торцу формообразователя (по-видимому, из-за высокого сопротивления питающего капилляра прохождению по нему расплава, возникающего вследствие вязкости расплава). Выращивать кристалл было невозможно.

Во время третьей и четвертой серий длина питающего капилляра 1) L=40 мм <h=43 мм и 2) L=115 мм >2,5 h=107,5 мм. Было проведено по 5 циклов выращивания в указанных вариантах. В первом случае практически всегда происходило «схлопывание» продольного канала малого диаметра. Во втором случае расплав не поднимался до рабочего торца формообразователя.

Во время пятой серии из 10 циклов поддерживались заявляемые соотношения Нэфф=30 мм <0,8 h=34,4 мм и 2,5h=107,5 мм >L=100 мм >h=43 мм. Это позволило устойчиво выращивать стержни диаметром 12 мм с внутренним каналом диаметром 0,8 мм длиной до 500 мм.

При соблюдении заявляемых соотношений получены также стержни с продольным отверстием диаметром 1,2 мм.

Таким образом, заявляемое изобретение позволяет стабильно получать кристаллы длиной до 500 мм и более с продольными каналами малого диаметра.

Заявляемое изобретение найдет применение в приборостроении, часовой промышленности, термометрии, химической промышленности.

Способ выращивания профилированных кристаллов тугоплавких соединений с продольными каналами малого диаметра, включающий формирование столбика расплава между затравкой и верхним торцом формообразователя, снабженного вертикальным кольцевым питающим капилляром постоянного сечения и, по крайней мере, одним вертикальным каналом малого диаметра, выполненным в верхней части формообразователя, отличающийся тем, что в процессе выращивания кристалла расстояние от верхнего торца формообразователя до уровня расплава Н поддерживают не более 0,8h, а питающий капилляр выполняют длиной L, определяемой из соотношения 2,5h>L>h, где h - высота подъема расплава в капилляре.
СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ СОЕДИНЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 79.
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
01.03.2019
№219.016.ce20

Устройство контроля газа в жидкометаллическом теплоносителе

Изобретение относится к области диагностики энергетических установок и может использоваться преимущественно в атомной энергетике для контроля герметичности парогенераторов, в которых греющим теплоносителем является жидкий металл (натрий, свинец, свинец-висмут), передающий тепло воде и водяному...
Тип: Изобретение
Номер охранного документа: 0002426111
Дата охранного документа: 10.08.2011
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
Показаны записи 61-66 из 66.
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
28.02.2019
№219.016.c853

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а именно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов. Ампульное устройство для реакторных исследований включает внешнюю цилиндрическую оболочку с герметизирующими торцевыми крышками, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002680721
Дата охранного документа: 26.02.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
13.06.2019
№219.017.8273

Способ получения смешанного фтористого сорбента для очистки гексафторида вольфрама, урана, молибдена и рения от фтористого водорода

Изобретение относится к технологии переработки отходов, образующихся при использовании высших фторидов металлов: WF, UF, МоF, ReF и содержащих фтористый водород, в частности к получению сорбента для очистки упомянутых гексафторидов. Способ получения сорбента осуществляют путем смешения...
Тип: Изобретение
Номер охранного документа: 0002408421
Дата охранного документа: 10.01.2011
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
+ добавить свой РИД