×
10.11.2014
216.013.04ed

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения катализатора селективного гидрирования органических соединений, который включает пропитку ретикулированного пенополиуретана шликером, содержащим более 30% мас. α-оксида алюминия с последующей подсушкой при температуре 100…120°C, прокалку при температуре 1050…1070°С, последующую многократную пропитку полученного высокопористого ячеистого носителя растворами алюмозоля до 6…10% мас., от массы носителя, сушку при температуре 100…120°С, прокалку при температуре 550…600°С, обработку раствором нитрата палладия, сушку при температуре не более 120°С и прокалку при температуре 450…500°C, восстановление полученного оксида палладия на носителе молекулярным водородом в азоте до металлического палладия с массовым содержанием не более 0,5% мас. при температуре 50…55°С, поверхность которого затем модифицируют наночастицами палладия радиационно-химическим методом. Технический результат заключается в увеличении срока службы катализатора, исключении стадии фильтрации целевого продукта от катализатора и получении чистого целевого продукта. 4 пр.
Основные результаты: Способ получения катализатора селективного гидрирования органических соединений, состоящего из носителя и активной части, содержащей нанодисперсные частицы металлов VIII группы, включающий обработку, подготовку и пропитку носителя раствором активной части, отличающийся тем, что носитель готовят из ретикулированного пенополиуретана путем пропитки шликером, содержащим более 30% мас. α-оксида алюминия, подсушивают при температуре 100…120°C, прокаливают при температуре 1050…1070°C, затем полученный высокопористый ячеистый носитель многократно пропитывают растворами γ-оксида алюминия до 6…10% мас. от массы носителя, подсушивают при температуре 100…120°C, прокаливают при температуре 550…600°C, обрабатывают раствором нитрата палладия, сушат при температуре не более 120°C, прокаливают при температуре 450…500°С в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в азоте до металлического палладия с массовым содержанием не более 0,5% мас. при температуре 50…55°С, поверхность которого модифицируют наночастицами палладия радиационно-химическим методом.

Изобретение относится к химической промышленности: к производству гетерогенных катализаторов селективного гидрирования органических соединений и может быть использовано на предприятиях химической и фармацевтической промышленности для проведения реакций органического синтеза.

Известен способ получения катализатора селективного гидрирования органических соединений (Патент RU 2259877, B01J 23/89, B01J 23/84, B01J 37/02, C07C 5/09, C07C 11/67, от 03.05.2001), состоящего из носителя и активной части, включающий термохимическую подготовку носителя, пропитку носителя раствором активного компонента. Носитель представляет собой частицы, а активная часть - смесь металлов (медь, палладий и металл из: серебро, платина и т.д.) с максимальным содержанием более 40% мас., в расчете на общую массу катализатора.

К недостаткам катализатора относят его высокую стоимость, наличие стадии фильтрации целевого продукта от катализатора, загрязнение катализатором целевого продукта, безвозвратные потери катализатора.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения катализатора селективного гидрирования органических соединений (патент №2366504 РФ, Катализатор селективного гидрирования органических соединений и способ его получения / Асланов Л.А., Валецкий П.М., Волков В.В., Григорьев М.Е.), включающий в себя следующие стадии: термохимическую обработку носителя (сажи), пропитку носителя раствором активной части, после пропитки носителя дополнительное проведение восстановления металлов VIII группы сначала в щелочной среде при воздействии ультразвука, затем раствором формальдегида, далее нагрев катализатора в течение 5..10 часов при температуре реакции в растворе ионной жидкости и активатора для дополнительной активации катализатора в процессе проведения каталитической реакции. В результате получают катализатор селективного гидрирования органических соединений, включающий мезопористый углеродный носитель в виде частиц размером 25…35 нм и активную часть, содержащую нанодисперсные частицы металлов VIII группы, содержание которых на носителе составляет 1…10% мас.

К недостаткам катализатора селективного гидрирования, полученного таким способом, можно отнести следующие: быстрое разрушение катализатора из-за интенсивного перемешивания реакционной смеси, в которую добавляют катализатор, в реакторе, безвозвратные потери катализатора, наличие стадии фильтрации целевого продукта от катализатора, загрязнение целевого продукта катализатором.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является способ получения катализатора селективного гидрирования органических соединений, предназначенного для предотвращения разрушения катализатора, увеличения срока службы катализатора, исключения стадии фильтрации целевого продукта от катализатора и получения чистого целевого продукта.

Для достижения указанного технического результата предлагается способ получения катализатора селективного гидрирования органических соединений, состоящего из носителя и активной части, содержащей нанодисперсные частицы металлов VIII группы, включающий обработку, подготовку и пропитку носителя раствором активной части и заключающийся в следующем. Высокопористый ячеистый носитель для катализатора изготавливают из ретикулированного пенополиуретана, пропитывают последний шликером, содержащим более 30% мас. α-оксида алюминия с последующей подсушкой при температуре 100…120°C и прокаливанием при температуре 1050…1070°C. В результате такой обработки органическая основа выгорает полностью и получается блочный высокопористый ячеистый носитель с общей открытой пористостью не менее 90…93%, с микропористостью 20…30%, содержащий более 90% α-оксида алюминия. Для развития поверхности катализатора на носитель наносят активную подложку, многократно пропитывая носитель растворами алюмозоля до 6…10% мас. от массы носителя, затем образцы носителя подсушивают при температуре 100…120°C, прокаливают при температуре 550…600°C, обрабатывают раствором нитрата палладия, сушат при температуре не более 120°C, прокаливают при температуре 450…500°C в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в азоте до металлического палладия не более 0,5% мас. при температуре 50…55°C, затем поверхность металлического палладия модифицируют наночастицами палладия методом пропитки обратно-мицеллярным раствором наночастиц палладия выбранного размера (2…10 нм).

Стабильные наноразмерные частицы палладия получены радиационно-химическим восстановлением ионов Pd+2 в обратно-мицеллярной системе Pd+22О/АОТ [бис(2-этилгексил)сульфосукцинат)] в растворителе изооктан по методике, представленной в (см. Патент РФ №2212268, Приоритет от 10.08.2001 / А.А.Ревина).

Адсорбцию наночастиц палладия на высокопористый ячеистый керамический носитель с активной подложкой алюмозоля и каталитически активным металлическим палладием не более 0,5% мас. проводят при комнатной температуре в течение нескольких суток.

Предлагаемый способ получения блочного высокопористого ячеистого катализатора селективного гидрирования органических соединений подтверждается следующими примерами:

Пример 1

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% мас. α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…120°C и прокаливанием при температуре 1050°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем носитель многократно пропитывают растворами алюмозоля до 6…10% мас. от массы носителя, сушат при температуре 100…110°C, прокаливают при температуре 550°C, обрабатывают раствором нитрата палладия, сушат при температуре 115°C и прокаливают при температуре 450°C в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в инертной среде до металлического палладия содержанием 0,5% мас. при температуре 50°С.

В обогреваемый реактор, представляющий собой цилиндрическую емкость с внутренним диаметром 50 мм, изготовленную из нержавеющей стали, заливают раствор дибензальацетона массой 0,5 г.

Блочный высокопористый ячеистый катализатор, содержащий активную подложку γ-Al2O3 и 0,5% мас. металлического палладия массой 31,3 г, с общей открытой пористостью 90-93%, микропористостью 20…30%, помещают в среднюю часть реактора, обеспечивая его неподвижность за счет крепления крестовин и шайб. Реактор закрывают крышкой, в которой предусмотрены карман для термопары и штуцер для ввода водорода. Реактор с помощью специального зажима крепят на качалке, способной производить число качаний, равное 120-160 мин-1, при этом обеспечиваются условия, при которых протекание реакции селективного гидрирования не лимитируется диффузией компонентов к внешней поверхности блочного высокопористого ячеистого катализатора. Поддерживают заданную температуру, равную 200°С, в реакторе подачей теплоносителя в «рубашку» реактора из термостата. Реактор изолируют асбестом для предотвращения потерь тепла в окружающую среду. Подают водород в реактор и создают в нем давление, равное 0,6 МПа. Температура реакции равна 50°C. Скорость реакции при 50% превращении дибензальацетона равна 0,45 мл/с, коэффициент использования палладия, KPd=2,86 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР-спектроскопии. Данные анализов подтверждают селективное гидрирование дибензальацетона.

Пример 2.

Приготовление катализатора и проведение реакции гидрирования дибензальацетона аналогично примеру 1. Подают водород в реактор и создают в нем давление, равное 0,3 МПа. Температура реакции равна 70°C. Скорость реакции при 50% превращении исходного вещества равна 0,19 мл/с, коэффициент использования палладия, KPd=0,9 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР-спектроскопии. Данные анализов подтверждают селективное гидрирование дибензальацетона.

Пример 3.

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% мас. α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…110°C и прокаливанием при температуре 1070°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем носитель многократно пропитывают растворами алюмозоля до 6…10% мас. от массы носителя, сушат при температуре 100…110°С, прокаливают в интервале при температуре 600°С, обрабатывают раствором нитрата палладия, сушат при температуре 120°С и прокаливают при температуре 500°С в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в азоте до металлического палладия содержанием 0,45% мас. при температуре 55°C, поверхность которого затем модифицируют наночастицами палладия.

В обогреваемый реактор, представляющий собой цилиндрическую емкость с внутренним диаметром 50 мм, изготовленную из нержавеющей стали, заливают раствор дибензальацетона массой 0,5 г.

Блочный высокопористый ячеистый катализатор, содержащий активную подложку γ-Al2O3 и металлический палладий 0,45% мас., поверхность которого модифицирована наночастицами палладия массой 40,6 г, с общей открытой пористостью 90-93%, микропористостью 20…30%, помещают в среднюю часть реактора, обеспечивая его неподвижность за счет крепления крестовин и шайб. Реактор закрывают крышкой, в которой предусмотрены карман для термопары и штуцер для ввода водорода. Реактор, с помощью специального зажима крепят на качалке, способной производить число качаний, равное 120-160 мин-1, при этом обеспечиваются условия, при которых протекание реакции селективного гидрирования не лимитируется диффузией компонентов к внешней поверхности блочного высокопористого ячеистого катализатора. Поддерживают заданную температуру, равную 200°C, в реакторе подачей теплоносителя в «рубашку» реактора из термостата. Реактор изолируют асбестом для предотвращения потерь тепла в окружающую среду. Подают водород в реактор и создают в нем давление, равное 0,6 МПа. Температура реакции равна 50°C. Скорость реакции при 50% превращении исходного вещества равна 2,50 мл/с, коэффициент использования палладия, KPd=12,00 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР-спектроскопии. Данные анализов подтверждают селективное гидрирование дибензальацетона. Более эффективное селективное гидрирование дибензальацетона (по сравнению с примером 1) происходит на блочном высокопористом ячеистом катализаторе, содержащем на металлической поверхности палладия наночастицы палладия.

По данным 1Н ЯМР-спектроскопии процесс селективного гидрирования дибензальацетона происходит с высокой степенью селективности восстановления C=C и сохранением C=O связи.

Пример 4. Приготовление катализатора и проведение реакции гидрирования дибензальацетона аналогично примеру 3. Подают водород в реактор и создают в нем давление, равное 0,3 МПа. Температура реакции равна 70°C. Скорость реакции при 50% превращении исходного вещества равна 1,45 мл/с, коэффициент использования палладия, KPd=4,10 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР -спектроскопии. Более эффективное селективное гидрирование дибензальацетона (по сравнению с примером 2) происходит на блочном высокопористом ячеистом катализаторе, содержащем на металлической поверхности палладия наночастицы палладия.

По данным 1Н ЯМР-спектроскопии процесс селективного гидрирования дибензальацетона происходит с высокой степенью селективности восстановления C=C связи и сохранением C=O связи.

Блочный высокопористый ячеистый катализатор селективного гидрирования органических соединений, полученный по предлагаемому способу, имеет общую открытую пористость 90…93%, микропористость 20…30%, средний размер пор 0,5…2,0 мкм и механическую прочность на раздавливание, равную 0,6…1,2 МПа.

Во всех приведенных примерах после выполненных испытаний отсутствовала эрозия блочного высокопористого ячеистого катализатора, об этом можно было судить по прозрачности выгружаемого продукта. Катализатор выдерживает более 50 регенераций.

Применение блочного высокопористого ячеистого катализатора селективного гидрирования органических соединений снижает давление и температуру процесса селективного гидрирования, исключает измельчение и потерю катализатора, благодаря его жесткой ячеистой структуре и высокой механической прочности, а также позволяет исключить стадии фильтрации целевого продукта от катализатора и очистки целевого продукта от катализатора. Способ получения блочного высокопористого ячеистого катализатора селективного гидрирования органических соединений в несколько раз снижает содержание палладия в катализаторе, что уменьшает его стоимость.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 32.
10.11.2015
№216.013.8e9d

Керамический высокопористый блочно-ячеистый катализатор окисления водорода

Изобретение относится к керамическому катализатору окисления водорода. Данный катализатор состоит из носителя и активной части, содержащей каталитически активный металл - платину, и получен обработкой, подготовкой и пропиткой носителя. При этом в качестве носителя используют корундовый блочный...
Тип: Изобретение
Номер охранного документа: 0002568118
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8eb9

Устройство измерения расхода реверсируемого многофазного потока

Изобретение относится к измерениям расхода реверсируемого многофазного потока. Устройство измерения расхода многофазного потока состоит из одновинтовой машины, винт которой является движителем для равномерного подвода дозированного количества механической энергии в реверсируемый многофазный...
Тип: Изобретение
Номер охранного документа: 0002568146
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9490

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах улавливания паров цезия при остекловывании высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве...
Тип: Изобретение
Номер охранного документа: 0002569651
Дата охранного документа: 27.11.2015
27.12.2015
№216.013.9d35

Способ получения керамических высокопористых блочно-ячеистых материалов

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов. Технический результат изобретения заключается в повышении удельной поверхности активного слоя. Полиуретановую матрицу ячеистой структуры пропитывают керамическим шликером, состоящим из...
Тип: Изобретение
Номер охранного документа: 0002571875
Дата охранного документа: 27.12.2015
10.03.2016
№216.014.c094

Керамический высокопористый блочно-ячеистый сорбент для улавливания радиоактивного йода и его соединений из газовой фазы

Предлагаемое изобретение относится к области обращения с радиоактивными отходами и облученным ядерным топливом и предназначено для улавливания радиоактивного йода и его соединений из газовой фазы в системах вентиляции и в системах йодной очистки атомных электростанций. Керамический...
Тип: Изобретение
Номер охранного документа: 0002576762
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.324b

Способ получения керамических высокопористых блочно-ячеистых материалов

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов-носителей катализаторов, сорбентов и других массообменных устройств и предназначено для использования в технологических процессах химической, нефтехимической, атомной отраслей, металлургии,...
Тип: Изобретение
Номер охранного документа: 0002580959
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.32bb

Способ получения пенобетона и установка для его осуществления

Группа изобретений относится к области получения пенобетона. В способе получения пенобетона, включающем приготовление технологической смеси путем перемешивания концентрата пенообразователя, воды, вяжущих, заполнителя, добавок и аэрацию смеси сжатым воздухом в смесителе, получение пенобетона...
Тип: Изобретение
Номер охранного документа: 0002581068
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.36ee

Плавленолитой высокохромистый огнеупорный материал

Изобретение относится к области производства хромсодержащих огнеупорных материалов, предназначенных для футеровки стекловаренных печей при варке бесщелочных алюмоборосиликатных стекол. Предлагается состав плавленолитого огнеупорного материала, компоненты которого взяты в следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002581182
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.7dfa

Гранулирующий шнековый пресс

Гранулирующий шнековый пресс относится к устройствам переработки методом проходного прессования высококонцентрированных полидисперсных композиций, в том числе трехфазных, с повышенной вязкостью, ограниченным запасом сдвиговой прочности, низкой адгезионной способностью, и может быть использован...
Тип: Изобретение
Номер охранного документа: 0002600763
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7ee6

Гранулирующий шнековый пресс

Изобретение относится к устройствам переработки методом проходного прессования высококонцентрированных полидисперсных композиций и может быть использовано в различных отраслях промышленности. Гранулирующий шнековый пресс включает шнек, многоканальный пресс-инструмент и корпус, содержащий...
Тип: Изобретение
Номер охранного документа: 0002601004
Дата охранного документа: 27.10.2016
Показаны записи 21-30 из 30.
27.11.2015
№216.013.9490

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах улавливания паров цезия при остекловывании высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве...
Тип: Изобретение
Номер охранного документа: 0002569651
Дата охранного документа: 27.11.2015
27.12.2015
№216.013.9d35

Способ получения керамических высокопористых блочно-ячеистых материалов

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов. Технический результат изобретения заключается в повышении удельной поверхности активного слоя. Полиуретановую матрицу ячеистой структуры пропитывают керамическим шликером, состоящим из...
Тип: Изобретение
Номер охранного документа: 0002571875
Дата охранного документа: 27.12.2015
10.03.2016
№216.014.c094

Керамический высокопористый блочно-ячеистый сорбент для улавливания радиоактивного йода и его соединений из газовой фазы

Предлагаемое изобретение относится к области обращения с радиоактивными отходами и облученным ядерным топливом и предназначено для улавливания радиоактивного йода и его соединений из газовой фазы в системах вентиляции и в системах йодной очистки атомных электростанций. Керамический...
Тип: Изобретение
Номер охранного документа: 0002576762
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.324b

Способ получения керамических высокопористых блочно-ячеистых материалов

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов-носителей катализаторов, сорбентов и других массообменных устройств и предназначено для использования в технологических процессах химической, нефтехимической, атомной отраслей, металлургии,...
Тип: Изобретение
Номер охранного документа: 0002580959
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.32bb

Способ получения пенобетона и установка для его осуществления

Группа изобретений относится к области получения пенобетона. В способе получения пенобетона, включающем приготовление технологической смеси путем перемешивания концентрата пенообразователя, воды, вяжущих, заполнителя, добавок и аэрацию смеси сжатым воздухом в смесителе, получение пенобетона...
Тип: Изобретение
Номер охранного документа: 0002581068
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.36ee

Плавленолитой высокохромистый огнеупорный материал

Изобретение относится к области производства хромсодержащих огнеупорных материалов, предназначенных для футеровки стекловаренных печей при варке бесщелочных алюмоборосиликатных стекол. Предлагается состав плавленолитого огнеупорного материала, компоненты которого взяты в следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002581182
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.7dfa

Гранулирующий шнековый пресс

Гранулирующий шнековый пресс относится к устройствам переработки методом проходного прессования высококонцентрированных полидисперсных композиций, в том числе трехфазных, с повышенной вязкостью, ограниченным запасом сдвиговой прочности, низкой адгезионной способностью, и может быть использован...
Тип: Изобретение
Номер охранного документа: 0002600763
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7ee6

Гранулирующий шнековый пресс

Изобретение относится к устройствам переработки методом проходного прессования высококонцентрированных полидисперсных композиций и может быть использовано в различных отраслях промышленности. Гранулирующий шнековый пресс включает шнек, многоканальный пресс-инструмент и корпус, содержащий...
Тип: Изобретение
Номер охранного документа: 0002601004
Дата охранного документа: 27.10.2016
04.04.2018
№218.016.2f08

Композиция для химического серебрения керамических материалов

Изобретение предназначено для химического серебрения керамических материалов. Композиция для химического серебрения керамических материалов содержит нитрат серебра, глюкозу, гидроксид калия, оксиэтилендифосфоновую кислоту, нитрат церия при следующем содержании компонентов, г/л: нитрат серебра –...
Тип: Изобретение
Номер охранного документа: 0002644462
Дата охранного документа: 12.02.2018
02.06.2023
№223.018.75e7

Электронно-лучевая система объемного (3d) радиационного наномодифицирования материалов и изделий в обратномицеллярных растворах

Изобретение относится к средству производства нанокомпозитных материалов, катализаторов, адсорбентов, нанофункционализации покрытий, а также изделий для радиоэлектроники, электротехники, медицины, сельского хозяйства, агро- и биотехнологий. Электронно-лучевая система объемного (3D)...
Тип: Изобретение
Номер охранного документа: 0002746263
Дата охранного документа: 12.04.2021
+ добавить свой РИД