×
10.11.2014
216.013.049d

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ КОНЦЕНТРАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии цветных и благородных металлов, в частности к извлечению золота из концентратов. Способ включает стадийное цианистое выщелачивание золота, на первой из которых измельченный исходный материал при перемешивании выщелачивают оборотным цианистым раствором. Из продукта первой стадии выделяют классификацией песковую фракцию. На второй стадии песковую фракцию выщелачивают в цианистом растворе с концентрацией NaCN 0,5-2 г/л. При этом растворы, полученные на второй стадии, направляют для выщелачивания исходного материала. Золото извлекают из растворов выщелачивания первой стадии. Кеки выщелачивания первой и второй стадий смешивают со связующим и пористым наполнителем, смесь гранулируют, складируют в виде штабеля и дополнительно извлекают золото из штабеля кучным выщелачиванием. В качестве пористого наполнителя используют золу сжигания каменных углей в количестве 5-10% от массы кеков. Кучное выщелачивание золота проводят обеззолоченным раствором с содержанием 0,1-0,5 г/л NaCN. Продуктивный раствор с кучного выщелачивания подкрепляют цианидом и направляют на стадию выщелачивания песковой фракции. Техническим результатом является повышение суммарного извлечения золота из концентратов на 4-5%. 2 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к гидрометаллургии цветных и благородных металлов, в том числе к выщелачиванию цветных металлов из минерального сырья. В частности, изобретение может быть использовано для выщелачивания золота из упорных, например, сульфидных углеродсодержащих концентратов.

Повышение извлечения металлов при выщелачивании достигается тонким измельчением минерального материала, например до крупности 20 микрон и менее /WO 96/29439 А1, 26.09.1996 г./. Однако при тонком помоле минерального сырья возрастают энергетические затраты на переработку и разделение твердой и жидкой фаз, получаемых после выщелачивания.

При выщелачивании измельченного минерального сырья в одном реакторе с перемешиванием в непрерывном режиме имеется большая вероятность того, что поступившие в реактор частицы выйдут из реактора, не успев в нужной степени провзаимодействовать с реагентами. Одним из путей повышения извлечения металлов при выщелачивании является использование 2-х и более стадийных технологических схем. При выщелачивании последовательно в нескольких реакторах (в каскаде) вероятность «проскока» частиц из цепи реакторов снижается. Мелкие свободные частицы золота и серебра растворяются в первую очередь и быстро. Для растворения крупного и вкрапленного золота требуется значительно большее время. Вторая и последующие стадии цианистого выщелачивания целесообразны прежде всего для этих целей и оправданы для крупной, песковой части сырья.

Например, известны 2-стадийные способы переработки минерального сырья, включающие разделение крупной песковой (тяжелой) и иловой фракций после первой стадии выщелачивания и дополнительное выщелачивание песковой фракции на второй стадии /RU 2203336, 05.03.2002, US 005948375, 10.07.1997/. Отмеченные способы характеризуются меньшими затратами на переработку сырья в целом. Вместе с тем, прямоточность движения перерабатываемого материала и растворов ограничивает извлечение выщелачиваемого металла в раствор.

Известен способ извлечения золота из минерального сырья, выбранный прототипом и включающий цианистое выщелачивание измельченного исходного материала при перемешивании, классификацию продукта выщелачивания по крупности на песковую и шламовую фракции, выщелачивание песковой фракции на второй стадии при перемешивании, извлечение золота из растворов выщелачивания, отличающийся тем, что при классификации выделяют песковую фракцию с содержанием твердого не менее 60%, для выщелачивание песковой фракции на второй стадии добавляют обеззолоченный цианистый раствор, доводят концентрацию NaCN 0,5-2 г/л при Ж:Т=2÷4:1, при этом раствор, полученный при выщелачивании песковой фракции, направляют для выщелачивания исходного материала, а золото извлекают из растворов, полученных на первой стадии /RU №2418869 от 20.05.2011/. Хвосты выщелачивания песковой и шламовой фракций направляют в отвал.

В данном способе, как и в аналогичных, после первой стадии выщелачивания исходное сырье разделяют классификацией на песковую и шламовую части, при этом песковую направляют на дополнительное выщелачивание. Отличительной особенностью прототипа является противоток выщелачиваемого материала и используемых растворов. При такой организации процесса для извлечения легковыщелачиваемого мелкого золота, содержащегося в исходном материале, используют раствор, уже обогащенный золотом на второй стадии. В итоге получают продуктивный золотосодержащий раствор с максимально высоким для данного материала содержанием золота. Цементационное или электролитическое извлечение золота из таких растворов протекает эффективнее, с меньшими удельными затратами, чем из относительно бедных растворов, получаемых в известных способах. Другим следствием противотока является то, что для выщелачивания на второй стадии недорастворенного крупного золота и золота, вкрапленного в песковую часть исходного сырья, используют обеззолоченные растворы, в которые добавляют (подкрепляют) крепкий раствор цианида до концентрации, максимально оправданной для данного процесса (0,5-2 г/л NaCN). Итоговая степень извлечения золота по предложенному в прототипе способу выше, чем при использовании аналогичных способов.

При извлечении золота из руды, содержащей 2-6 г/т, в хвостах выщелачивания песковой фракции остается не более 0,2-1 г/т и суммарная степень извлечения достигает 85-95%. Использование любых приемов, обеспечивающих более высокое извлечение золота, в частности дополнительный помол всей руды или песковой фракции, экономически не оправдано. На практике хвосты выщелачивания с таким содержанием золота отправляют в отвал.

Вместе с тем, при высоком содержании золота в сырье, например, при переработке флотационных и, особенно, гравитационных концентратов, характеризующихся относительно высокой крупностью частиц и тонкой вкрапленностью золота, при использовании известных технологических приемов желаемая эффективность цианирования не достигается. При переработке концентратов по способу прототипа на второй стадии выщелачивания песковой фракции часть труднодоступного золота, прежде всего золота в сростках с частицами минералов-носителей, остается нерастворенной. Дополнительное измельчение всей массы концентрата перед цианированием либо только песковой фракции перед второй стадией вскрывает золотинки и, в итоге, обусловливает повышенное извлечение, но увеличивает затраты и затрудняет последующее разделение золотосодержащих растворов и хвостов.

Особые проблемы возникают при цианировании концентратов, содержащих сорбционно-активные компоненты, в частности углистые вещества. Золото, переходящее в раствор при цианировании, в заметных количествах сорбируется такими компонентами и теряется с хвостами. При тонком измельчении концентратов удельная поверхность мягких углистых веществ возрастает, причем в гораздо большей степени, чем поверхность твердых компонентов концентрата, например сульфидных минералов. Потери сорбированного хвостами золота возрастают адекватно. Установлено, что при тонком помоле проявляются сорбционные свойства и других составляющих концентратов. В конечном итоге использование способа прототипа, в т.ч. с дополнительным помолом песковой фракции, при переработке многих типов концентратов характеризуется недостаточно высоким извлечением.

Задача данного изобретения заключается в повышении извлечения золота из концентратов, а планируемый технический результат обеспечивается проведением дополнительного выщелачивания хвостов.

Поставленная задача достигается способом извлечения золота из концентратов, включающим цианистое выщелачивание в две стадии, на первой из которых измельченный исходный материал при перемешивании выщелачивают оборотным цианистым раствором, выделяют из продукта первой стадии классификацией песковую фракцию, на второй стадии песковую фракцию выщелачивают в цианистом растворе с концентрацией NaCN 0,5-2 г/л, при этом растворы, полученные на второй стадии направляют для выщелачивания исходного материала, золото извлекают из растворов выщелачивания первой стадии, отличающимся тем, что кеки выщелачивания первой и второй стадий смешивают со связующим и пористым наполнителем, смесь гранулируют, складируют в виде штабеля и извлекают золото из штабеля путем кучного выщелачивания. В частном случае предлагаемого способа в качестве пористого наполнителя используют золу сжигания каменных углей в количестве 5-10% от массы кеков, кучное выщелачивание гранулированной смеси кеков проводят обеззолоченным раствором с содержанием 0,1-0,5 г/л NaCN, а продуктивный раствор с кучного выщелачивания подкрепляют цианидом и направляют на стадию выщелачивания песковой фракции.

Хвосты цианистого выщелачивания золота из концентратов любыми методами, в том числе по способу прототипа, содержат такое количество золота, которое побуждает поиск методов дополнительного извлечения. Принципиальным отличием предлагаемого способа является гранулирование хвостов стадийного цианирования, складирование их в штабель и дополнительное выщелачивание золота в режиме кучного выщелачивания. Такой режим в отличие от выщелачивания в реакторах не ограничен продолжительностью и удельным объемом выщелачивающего раствора (м3 на 1 т сырья). Именно эти особенности позволяют дополнительно перевести в раствор часть золота, недорастворенного в реакторах, и золота, сорбированного углистыми и шламистыми компонентами хвостов. Для растворения оставшегося после выщелачивания в реакторах золота нет необходимости использовать растворы с высокой концентрацией цианида. Исследованиями установлено и практикой кучного выщелачивания подтверждено, что решающим фактором в этой технологии является время контакта материала с раствором. В этой связи содержание цианида в обеззолоченном растворе, подаваемом на орошение штабеля, достаточно 0,1-0,5 г/л. Более высокие концентрации не оказывают положительного эффекта.

Содержание золота в продуктивном растворе кучного выщелачивания гранулированных хвостов по определению не может быть высоким. С этой точки зрения растворы целесообразно подкрепить по цианиду до уровня, предложенного в прототипе - 0,5-2 г/л NaCN, и направить на выщелачивание песковой фракции.

Опыты показали, что кучное выщелачивание неподготовленных хвостов шламовой и песковой фракции сульфидных концентратов, а также их смеси не представляется возможным. В массе штабеля эти материалы самопроизвольно уплотняются и теряют свойство проницаемости растворов. Попытки периодически взрыхлять слои толщиной даже 1-2 метра успеха не имели. Для обеспечения гидро- и воздухопроницаемости в таких случаях проводят грануляцию измельченного сырья с добавкой связующих, например цемента. Получение гранул нужной прочности из смеси сульфидных концентратов и цемента, как показали специальные опыты, достигается при дозировке цемента 5-10%. Это весьма затратно и, помимо прочего, приводит к формированию плотных и плохопроницаемых для растворов гранул. Для сохранения требуемой гидропроницаемости в смесь перед грануляцией целесообразно добавлять пористый наполнитель. С этой целью в данном способе предложено использовать мелкодисперсную золу, образующуюся при сжигании каменных углей на ТЭЦ и ГРЭС. Требуемое качество гранул достигается при дозировке золы в количестве 5-10% от массы кеков. Большая дозировка золы эффекта не приносит, выщелачиваемый материал разубоживается, увеличиваются затраты на грануляцию. При меньшем расходе золы проницаемость гранул и степень извлечения золота на стадии кучного выщелачивания не достаточны.

В предлагаемом способе технологической схемой предусмотрено последовательное выщелачивание золота с перемешиванием сырья в реакторах и кучное выщелачивание, при этом суммарное предельное извлечение золота неизменно. Условно, если выщелачивание в реакторах длится 10 часов, то в режиме кучного процесса на последующей стадии через 1 месяц остаточное содержание золота в хвостах снижается до 1 г/т и далее не уменьшается. Если в реакторах выщелачивание проводить 2 часа, то через 2 месяца кучного выщелачивания остаточное содержание золота также снижается до 1 г/т и далее не уменьшается. Мировая практика кучного выщелачивания свидетельствует о существенно меньших удельных затратах на единицу массы извлеченного золота в сравнении с выщелачиванием в чанах. С этой точки зрения экономически целесообразно в реакторах за сравнительно короткое время выщелачивать большую часть золота, но предельного извлечения добиваться в режиме кучного выщелачивания. В результате нагрузка на реакторы и расход энергии на перемешивание сокращается, а производительность в целом возрастает.

Примером реализации заявляемого способа служат результаты следующих опытов.

Флотационный пиритный концентрат березовского рудника (Урал) крупностью -0,4 мм содержал 38 г/т золота. Спектрально-фазовым анализом выявлено наличие в концентрате 0,35% органического углерода. В лабораторных реакторах объемом 5 л с механическим перемешиванием и интенсивной аэрацией выщелачивали золото из навесок массой 1 кг при Ж:Т=3:1.

После операции выщелачивания проводили разделение шламовой и песковой фракций на гидроциклоне. Песковую фракцию (+0,074 мм) с содержанием твердого 65% распульповывали обеззолоченным цианистым раствором и проводили вторую стадии цианирования. После отделения от золотосодержащих растворов хвосты выщелачивания шламовой и песковой фракций смешивали с цементом и мелкодисперсной золой ГРЭС, смесь гранулировали и после формирования гранул достаточной прочности загружали в лабораторный перколятор, в котором имитировали кучное выщелачивание.

Выщелачивание проводили по стадиальной схеме в соответствии со структурой формулы:

- исходный материал оборотным цианистым раствором, полученным от обработки песковой фракции;

- песковую фракцию раствором, полученным от кучного выщелачивания гранулированных кеков и подкрепленным по цианиду;

- гранулированные кеки выщелачивания шламовой и песковой фракций обрабатывали маточным обеззолоченным раствором.

Концентрация NaCN на стадии выщелачивания песковой фракции соответствовала рекомендациям прототипа - 2 г/л.

Кучное выщелачивание гранулированных кеков проводили в течение 1 месяца, после чего определяли в хвостах остаточное содержание золота и рассчитывали окончательное извлечение. В опытах варьировали дозировкой золы при грануляции и концентрацией цианида в растворе, который использовали для обработки гранул.

Для сравнения проводили цианирование концентрата по способу прототипа в две стадии и также после анализа хвостов рассчитывали извлечение золота.

Результаты опытов приведены в таблице.

№ опыта Дозировка золы при анулировании, % Концентрация NaCN в растворе кучного выщелачивания, % Извлечение золота в раствор суммарное, %
Предлагаемый способ
1 3 0,05 87
2 5 0,1 90
3 7 0,2 92
4 10 0,5 93
5 15 1,0 93
Способ прототипа
6 - - 86

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения за счет дополнительной стадии кучного выщелачивания в рекомендованных режимах дает возможность повысить извлечение золота при цианировании на 4-5% по сравнению со способом прототипа.

Источник поступления информации: Роспатент

Показаны записи 21-25 из 25.
25.08.2017
№217.015.c353

Способ переработки медеэлектролитного шлама

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам переработки шламов электролитического рафинирования меди. Способ включает выщелачивание сурьмы и свинца из медеэлектролитного шлама в растворе, содержащем 50-200 г/дм глицерина, 50-100 г/дм щелочи...
Тип: Изобретение
Номер охранного документа: 0002618050
Дата охранного документа: 02.05.2017
26.08.2017
№217.015.de1b

Способ цианистого выщелачивания золота и серебра

Изобретение относится к гидрометаллургии и может быть использовано при выщелачивании металлов из руд, концентратов и хвостов обогащения. Способ может быть использован в процессах переработки сырья благородных металлов, в частности, при цианистом выщелачивании золота и серебра из руд и...
Тип: Изобретение
Номер охранного документа: 0002624751
Дата охранного документа: 06.07.2017
29.12.2017
№217.015.fb00

Способ извлечения благородных металлов из растворов

Способ осаждения благородных металлов может быть использован в технологиях переработки сырья драгоценных металлов, в частности после стадии цианистого выщелачивания золота и серебра из руд и концентратов. Показатели осаждения благородных металлов улучшаются за счет сочетания процессов...
Тип: Изобретение
Номер охранного документа: 0002640212
Дата охранного документа: 27.12.2017
13.02.2018
№218.016.20e7

Способ измельчения минерального сырья

Изобретение относится к горнорудной промышленности и может быть использовано при измельчении минерального сырья перед обогащением или гидрометаллургической переработкой. Способ включает предварительную обработку водным раствором ПАВ с наложением импульсного физического воздействия и последующее...
Тип: Изобретение
Номер охранного документа: 0002641527
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.31c1

Способ извлечения благородных металлов из цианистых растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ включает контактирование цианистых растворов с осаждающим компонентом, в качестве которого используют порошки цинка или алюминия, нанесенные на фильтровальную бумагу....
Тип: Изобретение
Номер охранного документа: 0002645168
Дата охранного документа: 16.02.2018
Показаны записи 21-29 из 29.
04.04.2018
№218.016.31c1

Способ извлечения благородных металлов из цианистых растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ включает контактирование цианистых растворов с осаждающим компонентом, в качестве которого используют порошки цинка или алюминия, нанесенные на фильтровальную бумагу....
Тип: Изобретение
Номер охранного документа: 0002645168
Дата охранного документа: 16.02.2018
19.12.2018
№218.016.a856

Способ извлечения металлов из растворов

Изобретение относится к металлургии цветных металлов, в частности к извлечению благородных металлов из цианистых растворов цинком или алюминием. Способ включает контактирование растворов с электроотрицательным металлом, загруженным в донную конусную часть цементатора. Раствор подают снизу...
Тип: Изобретение
Номер охранного документа: 0002675135
Дата охранного документа: 17.12.2018
17.02.2019
№219.016.bbc6

Способ кучного выщелачивания золота

Изобретение относится к гидрометаллургии и может быть использовано при кучном выщелачивании золота из руд, концентратов и хвостов обогащения. Способ кучного выщелачивания золота включает обработку минерального сырья выщелачивающим раствором, окомкование, закладку окомкованной руды в штабель,...
Тип: Изобретение
Номер охранного документа: 0002680120
Дата охранного документа: 15.02.2019
21.03.2019
№219.016.ebc7

Способ переработки сурьмусодержащего сырья

Изобретение относится к переработке сурьмусодержащего сырья. Способ включает приведение в контакт исходного сурьмусодержащего сырья и алюминиевой стружки с водным раствором щелочи в режиме перколяции с обеспечением цементации сурьмы из сурьмусодержащих соединений алюминием. Расход алюминия...
Тип: Изобретение
Номер охранного документа: 0002682365
Дата охранного документа: 19.03.2019
05.07.2019
№219.017.a65c

Способ электролитического рафинирования меди

Изобретение относится к электролитическому рафинированию меди, содержащей примеси в количестве до 2 мас.%. Способ включает формирование из меди анода и электролитическое растворение анода в сернокислотном растворе с осаждением катодной меди. Формируют насыпной анод из гранул меди крупностью...
Тип: Изобретение
Номер охранного документа: 0002693576
Дата охранного документа: 03.07.2019
16.01.2020
№220.017.f568

Способ восстановления меди из сульфидных соединений

Изобретение относится к металлургии меди и может быть использовано для восстановления меди из ее сульфидных природных соединений и соединений, присутствующих в технологических продуктах, например в штейнах и сульфидных шламах. Восстановление меди из сульфидных продуктов ведут при контакте...
Тип: Изобретение
Номер охранного документа: 0002710810
Дата охранного документа: 14.01.2020
09.04.2020
№220.018.1381

Способ очистки оборотных цинковых растворов выщелачивания от лигносульфонатов

Изобретение относится к гидрометаллургии цинка, также предлагаемый способ может быть использован для очистки сточных вод. Способ очистки сульфатного цинкового раствора от примесей цементацией цинковой пылью заключается в предварительном контактировании раствора с твердым веществом,...
Тип: Изобретение
Номер охранного документа: 0002718440
Дата охранного документа: 06.04.2020
29.05.2023
№223.018.727f

Способ переработки полиметаллического сульфидного сырья цветных металлов

Изобретение относится к гидрометаллургии, а именно к переработке полиметаллического сульфидного сырья, содержащего цветные и благородные металлы. Полиметаллическое сульфидное сырьё цветных металлов выщелачивают в растворе азотной кислоты и улавливают нитрозные газы. Выщелачивание проводят в...
Тип: Изобретение
Номер охранного документа: 0002796344
Дата охранного документа: 22.05.2023
17.06.2023
№223.018.80fb

Применение серебряной соли n-{ 4-[(1,3-тиазол-2-ил)сульфамоил]фенил} -1-фенил-5-(4-этоксифенил)пиразол-3-карбоксамида в качестве противогрибкового средства в отношении штаммов грибов c. tropicalis, c. krusei и c. glabrata

Изобретение относится к применению серебряной соли -{4-[(1,3-тиазол-2-ил)сульфамоил]фенил}-1-фенил-5-(4-этоксифенил)пиразол-3-карбоксамида формулы (I) в качестве противогрибкового средства в отношении штаммов грибов , и . Указанная соль обладает низкой токсичностью и может найти применение в...
Тип: Изобретение
Номер охранного документа: 0002763724
Дата охранного документа: 30.12.2021
+ добавить свой РИД