×
10.11.2014
216.013.03f0

СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения антиоксидантной/оксидантной активности природных, синтетических и биологических объектов для исследования антиоксидантных/оксидантных свойств веществ и продуктов, контроля состава пищевых продуктов, диагностики заболеваний. Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки раствора реагента или анализируемого вещества. Изобретение обеспечивает повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга анализируемых веществ, используемых реагентов и растворителей. 2 з.п. ф-лы, 6 ил., 6 пр.
Реферат Свернуть Развернуть

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности.

Известен способ количественного определения оксидантов и/или антиоксидантов в коже [Международная публикация WO/1996/013193], заключающийся в определении потенциала тестового раствора, содержащего FeCl3 или комплекс ADP-Fe(III) для определения антиоксидантов и систему I2/Nal для определения оксидантов, введенного в контакт с кожей.

К недостаткам данного способа можно отнести то, что в тестовом растворе используются только водные среды, что не позволяет анализировать широкий круг важных органических антиоксидантов и оксидантов. Кроме того, используется кислый раствор (pH=2), что не моделирует реальные процессы, происходящие в организме в нейтральной среде. Измеряется только одно значение потенциала, которое зависит от множества факторов и не дает достоверной информации о количестве антиоксидантов/оксидантов, т.к. не учитывается исходное состояние системы. Также результат измерения выражают в виде потенциала. Не оценивается собственно величина оксидантной и/или антиоксидантной активности, что усложняет интерпретацию получаемых результатов. Также использование системы I2/Nal снижает достоверность получаемых результатов из-за повышенной летучести I2.

Известен способ определения антиоксидантов в растворе [Международная публикация US 6177260 B1], основанный на использовании в качестве окислителя комплекса Fe(III)-трипиридилтриазина, который при взаимодействии с антиоксидантами восстанавливается до Fe(II)-трипиридилтриазина, окрашенного в синий цвет (максимум поглощения при 593 нм).

Недостатком этого способа является то, что метод является не чувствительным к сульфгидрильным SH-содержащим антиоксидантам, таким как глутатион и цистеин, являющимся одним из основных звеньев антиоксидантной системы защиты организма, поэтому метод не позволяет оценить суммарное содержание антиоксидантов в исследуемом объекте. Кроме того, в способе используется также кислый раствор, что не моделирует реальные процессы, происходящие в организме в нейтральной среде.

Наиболее близким решением служит способ определения оксидантной/антиоксидантной активности растворов (RU 2235998), заключающийся в том, что предварительно готовят исходный раствор, в который вводят медиаторную систему, содержащую одновременно окисленную и восстановленную формы реагента, а оценку оксидантной/антиоксидантной активности проводят по изменению окислительно-восстановительного потенциала раствора, определенного до и после введения в исходный раствор анализируемого вещества.

К недостаткам данного способа можно отнести то, что в данном способе в качестве медиаторной системы могут быть Ox/Red пары химических элементов или соединений. Использование одновременно двух форм системы существенно усложняет выбор компонентов медиаторной системы, которые необходимо варьировать в зависимости от круга анализируемых соединений, особенно в апротонных средах для анализа органических соединений. Кроме того, при предложенном алгоритме не учитывается влияние матрицы изучаемого объекта на изменение потенциала системы. Также в данном способе в органических растворителях предлагается применять систему ферроцен/феррициний, использование которой несмотря на хорошую обратимость крайне затруднительно из-за неустойчивости ионов феррициния. И как было отмечено, использование системы I2/I- снижает точность получаемых результатов.

Задачей, решаемой данным изобретением, служит повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга используемых реагентов и растворителей, анализируемых веществ.

Задача решается тем, что в качестве реагента используют только одну окисленную или восстановленную форму металла в составе комплексного соединения. Таким образом, расширяется круг используемых реагентов и круг исследуемых объектов в различных растворителях. Благодаря тому, что концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла. За счет быстрого протекания реакции и быстрого установления равновесия в растворе увеличивается экспрессность анализа. Измерение потенциала проводится после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом и последующей добавки раствора реагента или анализируемого вещества, что также приводит к увеличению экспрессности анализа. Анализ проводится путем введения двух последовательных добавок сначала анализируемого вещества в раствор реагента, а затем добавки также раствора анализируемого вещества или реагента. Таким образом, это позволяет учесть влияние матрицы сложных объектов на изменение потенциала и повысить воспроизводимость, точность, достоверность. Также в случае второй добавки реагента, а не анализируемого вещества, значительно экономится объем исследуемого объекта в тех случаях, когда это необходимо.

Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки реагента или анализируемого вещества.

В качестве реагента может быть использована окисленная форма металла в составе комплексного соединения. В этом случае антиоксиданты в составе анализируемого вещества реагируют с окисленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αАОА=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где АОА - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,203

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C′ - концентрация окисленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагента может быть использована восстановленная форма металла в составе комплексного соединения. В этом случае оксиданты в составе анализируемого вещества реагируют с восстановленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Оксидантную активность рассчитывают по формуле:

,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, то определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Оксидантную активность в этом случае рассчитывают по формуле:

,

где OA -оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

Е1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора восстановленной формы реагента, B;

C′ - концентрация восстановленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

Таким образом, в обобщенном виде антиоксидантную/оксидантную активность рассчитывают по формулам:

1) по двукратной добавке анализируемого вещества:

,

где AOA - антиоксидантная активность, М-экв;

OA - оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора;

2) по однократной добавке анализируемого вещества и последующей добавке реагента

,

где AOA - антиоксидантная активность, М-экв;

OA- оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C - концентрация окисленной/восстановленной формы реагента во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагентов могут быть использованы комплексные соединения металлов переменной валентности с неорганическими лигандами, например K3[Fe(CN)6], K4[Fe(CN)6], K3[Mn(CN)6], K4[Mn(CN)6], K3[Mo(CN)8], K4[Mo(CN)8], [Fe(SCN)3], [Fe(SCN)2], также комплексные соли металлов переменной валентности с органическими лигандами, например тетраэтиламмония гексацианоферрат (III), тетраэтиламмония гексацианоферрат (II), тетрабутиламмония гексацианоманганат (III), тетраэтиламмония тетрахлороферрат (III), тетраэтиламмония тетрахлороферрат (II), Fe(II)-PDT, Fe(II)-TPTZ, Fe(III)-TPTZ, дикетонаты железа, никеля, кобальта. В качестве растворителей используются гидрофильные, гидрофобные и смешанные растворители.

В качестве протонных растворителей могут быть использованы вода, спирты и др., в качестве апротонных: хлороформ, ацетонитрил, гексан, ацетон и различные эфиры. Также может быть использована смесь растворителей.

Рабочий электрод может быть изготовлен из платины, золота стеклоуглерода.

Электродом сравнения в водных растворах может служить стандартный хлорсеребряный электрод, в органических растворителях - двуключевой хлоридсеребрянный электрод, первая емкость которого заполнена водой, содержащей хлорид-ионы, вторая емкость - органическим растворителем, например ацетонитрилом, содержащим, например, перхлорат лития или тетраэтиламмония тетрафторборат. В органических средах также может быть использован электрод первого рода Ag/AgNO3 в органическом растворителе.

Указанные отличия существенны. Использование в качестве реагента одной окисленной или восстановленной формы металла в составе комплексного соединения позволяет расширить круг используемых реагентов и круг исследуемых объектов в различных растворителях. Концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, поэтому химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла, что увеличивает экспрессность метода. Измерение потенциала проводится после прохождения химической реакции, что сокращает число измерительных стадий и также увеличивает экспрессность метода. Введение двух последовательных добавок раствора анализируемого вещества существенно повышает точность, достоверность и воспроизводимость результатов, что позволяет анализировать различные объекты со сложной матрицей.

В настоящее время из патентной и научно-технической литературы не известен способ определения антиоксидантной/оксидантной активности в заявляемой совокупности признаков.

На фиг.1 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] двух добавок аскорбиновой кислоты в водной среде.

На фиг.2 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)2] двух добавок пероксида водорода в водной среде.

На фиг.3 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] аскорбиновой кислоты и последующей добавки [Fe(SCN)3].

На фиг.4 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] зеленого чая и последующей добавки [Fe(SCN)3].

На фиг.5 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок раствора токоферола в хлороформе (электролит: 0,05М тетраэтиламмония тетрофторборат).

На фиг.6 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок нерафинированного подсолнечного масла (электролит: 0,05М тетраэтиламмония тетрофторборат).

Способ иллюстрируется следующими примерами.

Пример 1

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,075 мл 0,02М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 446 мВ. Далее вносят вторую добавку 0,019 мл того же раствора аскорбиновой кислоты. Установившееся значение потенциала (E2) составляет 412 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+AKOX,

где AK - аскорбиновая кислота, AKOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.1. Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения второй добавки раствора аскорбиновой кислоты, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,04 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 2

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)2], в фосфатном буферном растворе опускают рабочий электрод и электрод сравнения и вносят 0,060 мл 0,01М раствора Н2O2. Установившееся значение потенциала (E1) составляет 272 мВ. Далее вносят вторую добавку 0,060 мл того же раствора Н2O2. Установившееся значение потенциала (E2) составляет 298 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)2]+H202=n[Fe(SCN)3]+H2O2Red,

где H2O2Red - продукты восстановления пероксида водорода.

Результаты измерений приведены на фиг.2.

Оксидантную активность в этом случае рассчитывают по формуле:

,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента [Fe(SCN)2] в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора Н2O2, B;

E2 - потенциал, измеренный после введения второй добавки раствора Н2O2, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления OA равна 0,02 M-экв, что соответствует двухэлектронному восстановлению пероксида водорода.

Пример 3

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл 0,01375М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 442 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 464 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+АКOX,

где AK - аскорбиновая кислота, АКOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.3. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C - концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что AOA равна 0,027 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 4

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл зеленого чая в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 431 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 455 мВ.

Результаты измерений приведены на фиг.4.

Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M; α=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора зеленого чая, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C′- концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что АОА равна 0,036 М-экв.

Пример 5

В 5 мл раствора, содержащего 0,01М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 0,25 мл 0,060 М раствора токоферола в хлороформе. Установившееся значение потенциала (E1) составляет 469 мВ.

Далее вносят такое же количество токоферола. Установившееся значение потенциала (E2) составляет 438 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+токоферол=n[Fe(SCN)2]+токоферолOX,

где токоферолOX - продукт окисления токоферола.

Результаты измерений приведены на фиг.5.

Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора токоферола, B;

E2 - потенциал, измеренный после введения второй добавки раствора токоферола, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,058 M-экв, что соответствует наличию одной функциональной группы в молекуле токоферола, определяющей его антиоксидантные свойства, что соответствует действительности.

Пример 6

В 5 мл раствора, содержащего 0,001М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 1 мл подсолнечного нерафинированного масла в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 515 мВ. Далее вносят такое же количество нерафинированного масла. Установившееся значение потенциала (E2) составляет 469 мВ.

Результаты измерений приведены на фиг.6.

Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора нерафинированного масла, B;

E2 - потенциал, измеренный после введения второй добавки раствора нерафинированного масла, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления АОА равна 0,0022 М-экв.


СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 115.
10.01.2015
№216.013.1df8

Биогазовая установка

Изобретение относится к области переработки и утилизации органических отходов путем сбраживания биомассы для получения биогаза и удобрения, в том числе в зонах с холодным климатом. Биогазовая установка содержит теплоизолированный метантенк, состоящий из экструдера-смесителя, электрических...
Тип: Изобретение
Номер охранного документа: 0002539100
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfc

Способ изготовления безгистерезисного актюатора с линейной пьезоэлектрической характеристикой

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических актюаторов, характеризующихся широким интервалом рабочих температур, в частности для изготовления прецизионных безгистерезисных сканеров сканирующих зондовых микроскопов и устройств...
Тип: Изобретение
Номер охранного документа: 0002539104
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2254

Сталь для изготовления кованых прокатных валков

Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб. Сталь содержит компоненты при следующем соотношении, мас.%: углерод (С) 1,2-1,4, кремний (Si) 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002540241
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22a0

Способ переработки алюминиевого шлака

Изобретение относится к вторичной металлургии, в частности, к способу переработки алюминиевого шлака. Способ включает измельчение алюминиевого шлака, выделение металлического алюминия, смешивание остатка после выделения металлического алюминия с компонентом, содержащим окислы железа, спекание,...
Тип: Изобретение
Номер охранного документа: 0002540317
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2773

Система предотвращения аварий карьерного автомобиля

Изобретение относится к системам повышения безопасности движения карьерных автомобилей. Система предотвращения аварий карьерного автомобиля с антиблокировочной системой тормозов содержит две штанги, установленные на горизонтальном кронштейне кузова с возможностью поворота в вертикальное и...
Тип: Изобретение
Номер охранного документа: 0002541556
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a0c

Способ получения цилиндрической заготовки в виде прутка из металлического армированного композиционного материала

Изобретение относится к области металлургии, а именно к методам получения заготовок типа прутков из композиционных материалов литейными технологиями. Способ включает размещение в цилиндрической емкости проволоки из упрочняющего металлического материала, расплавление металла матрицы, заполнение...
Тип: Изобретение
Номер охранного документа: 0002542221
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b16

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов...
Тип: Изобретение
Номер охранного документа: 0002542487
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ba8

Лазерный толщиномер и способ его калибровки

Изобретение относится к измерительной технике, а именно к калибровке лазерных толщиномеров, построенных по методу лазерной триангуляции, при котором пучки излучения направлены с двух сторон перпендикулярно к контролируемой поверхности, а принятый оптический сигнал фиксируется многоэлементным...
Тип: Изобретение
Номер охранного документа: 0002542633
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e4c

Применение 2-морфолино-5-фенил-6н-1,3,4-тиадизин, гидробромида в качестве средства, изменяющего суммарную мощность спектра вариабельности сердечного ритма и обладающего антибрадикардическими свойствами

Изобретение относится к области профилактической медицины, отдельных специальных разделов клинической медицины и к области биологически активных соединений. Предложено применение гидробромида 2-морфолино-5-фенил-6H-1,3,4-тиадизина в качестве средства, изменяющего суммарную мощность спектра...
Тип: Изобретение
Номер охранного документа: 0002543320
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.391f

Способ получения фенацетина

Изобретение относится к способу получения фенацетина. Способ осуществляют путем восстановления п-этоксинитробензола, проводимым в изопропиловом спирте при перемешивании с катализатором Ni-Ренея под давлением водорода 2-4 атм при 60-70°C в присутствии уксусного ангидрида, ацилирования...
Тип: Изобретение
Номер охранного документа: 0002546111
Дата охранного документа: 10.04.2015
Показаны записи 41-50 из 168.
20.01.2014
№216.012.97f3

Способ получения трубы из технически чистого титана с радиальной текстурой

Изобретение относится к области металлургии, а именно к получению труб из технически чистого титана с радиальной структурой. Для получения трубы из технически чистого титана с радиальной текстурой изготавливают заготовки в виде колец, деформируют с уменьшением толщины их стенок и увеличением их...
Тип: Изобретение
Номер охранного документа: 0002504598
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.97f5

Способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе 4÷6·10 ион/см в указанную пленку и первый отжиг при температуре 900÷1000°C...
Тип: Изобретение
Номер охранного документа: 0002504600
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98c3

Одномодовый двухслойный кристаллический инфракрасный световод

Изобретение относится к волоконно-оптическим системам связи, а именно к одномодовым двухслойным кристаллическим инфракрасным (ИК) световодам для спектрального диапазона от 2 до 50 мкм. Световод включает сердцевину и оболочку. Сердцевина диаметром 10-250 мкм выполнена из кристаллов на основе...
Тип: Изобретение
Номер охранного документа: 0002504806
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9b84

Способ получения трифенилена

Изобретение относится к области органического синтеза полиядерных углеводородов. Предлагается способ синтеза трифенилена путем взаимодействия на первой стадии циклогексанона последовательно с NaOH, полифосфосфорной кислотой с получением додекагидротрифенилена, который на второй стадии...
Тип: Изобретение
Номер охранного документа: 0002505518
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b86

Солнечная установка для выработки спирта и сопутствующих материалов

Изобретение относится к установке для выработки спирта и сопутствующих материалов, содержащей источник тепловой энергии, подключенный к бродильному чану с подготовленной биомассой, к брагоперегонному агрегату с ректификационной колонной, соединенным циркуляционным насосом. Установка...
Тип: Изобретение
Номер охранного документа: 0002505520
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b8c

Способ получения анестезина

Изобретение относится к способу получения этилового эфира n-аминобензойной кислоты (анестезина) формулы который обладает местным анестезирующим действием и является полупродуктом в синтезе новокаина. Способ заключается в восстановлении этилового эфира n-нитробензойной кислоты с последующим...
Тип: Изобретение
Номер охранного документа: 0002505526
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9be4

Способ извлечения благородных металлов из растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ извлечения благородных металлов из растворов включает контактирование раствора с сорбентом, нанесенным на носитель с развитой поверхностью. В качестве сорбента используют...
Тип: Изобретение
Номер охранного документа: 0002505614
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c3e

Термоэнергетическая ветроустановка

Изобретение относится к ветроэнергетике и может быть использовано для получения механической или электрической энергии. Ветроустановка содержит неподвижный несущий корпус, вертикальную ось, соединенную с ротором в верхней части, электрогенератором и побудителем тяги в основании корпуса,...
Тип: Изобретение
Номер охранного документа: 0002505704
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c69

Способ заброски твердого топлива на неподвижную колосниковую решетку для сжигания в плотном слое

Изобретение относится к области сжигания твердого топлива в плотном слое на неподвижной колосниковой решетке с ручным обслуживанием и может быть использовано в топках твердотопливных теплогенераторов, печей, паровых и водогрейных котлов. Сущность предлагаемого способа заброски твердого топлива...
Тип: Изобретение
Номер охранного документа: 0002505747
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c9b

Способ определения коэффициента трения при пластической деформации

Изобретение относится к области изучения трения при обработке металлов давлением, предпочтительно в технологиях ковки. Сущность: осуществляют изготовление испытуемого образца, фиксацию его начальных геометрических параметров, осадку с уменьшением толщины образца, фиксацию геометрических...
Тип: Изобретение
Номер охранного документа: 0002505797
Дата охранного документа: 27.01.2014
+ добавить свой РИД