×
10.11.2014
216.013.03f0

Результат интеллектуальной деятельности: СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения антиоксидантной/оксидантной активности природных, синтетических и биологических объектов для исследования антиоксидантных/оксидантных свойств веществ и продуктов, контроля состава пищевых продуктов, диагностики заболеваний. Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки раствора реагента или анализируемого вещества. Изобретение обеспечивает повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга анализируемых веществ, используемых реагентов и растворителей. 2 з.п. ф-лы, 6 ил., 6 пр.

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности.

Известен способ количественного определения оксидантов и/или антиоксидантов в коже [Международная публикация WO/1996/013193], заключающийся в определении потенциала тестового раствора, содержащего FeCl3 или комплекс ADP-Fe(III) для определения антиоксидантов и систему I2/Nal для определения оксидантов, введенного в контакт с кожей.

К недостаткам данного способа можно отнести то, что в тестовом растворе используются только водные среды, что не позволяет анализировать широкий круг важных органических антиоксидантов и оксидантов. Кроме того, используется кислый раствор (pH=2), что не моделирует реальные процессы, происходящие в организме в нейтральной среде. Измеряется только одно значение потенциала, которое зависит от множества факторов и не дает достоверной информации о количестве антиоксидантов/оксидантов, т.к. не учитывается исходное состояние системы. Также результат измерения выражают в виде потенциала. Не оценивается собственно величина оксидантной и/или антиоксидантной активности, что усложняет интерпретацию получаемых результатов. Также использование системы I2/Nal снижает достоверность получаемых результатов из-за повышенной летучести I2.

Известен способ определения антиоксидантов в растворе [Международная публикация US 6177260 B1], основанный на использовании в качестве окислителя комплекса Fe(III)-трипиридилтриазина, который при взаимодействии с антиоксидантами восстанавливается до Fe(II)-трипиридилтриазина, окрашенного в синий цвет (максимум поглощения при 593 нм).

Недостатком этого способа является то, что метод является не чувствительным к сульфгидрильным SH-содержащим антиоксидантам, таким как глутатион и цистеин, являющимся одним из основных звеньев антиоксидантной системы защиты организма, поэтому метод не позволяет оценить суммарное содержание антиоксидантов в исследуемом объекте. Кроме того, в способе используется также кислый раствор, что не моделирует реальные процессы, происходящие в организме в нейтральной среде.

Наиболее близким решением служит способ определения оксидантной/антиоксидантной активности растворов (RU 2235998), заключающийся в том, что предварительно готовят исходный раствор, в который вводят медиаторную систему, содержащую одновременно окисленную и восстановленную формы реагента, а оценку оксидантной/антиоксидантной активности проводят по изменению окислительно-восстановительного потенциала раствора, определенного до и после введения в исходный раствор анализируемого вещества.

К недостаткам данного способа можно отнести то, что в данном способе в качестве медиаторной системы могут быть Ox/Red пары химических элементов или соединений. Использование одновременно двух форм системы существенно усложняет выбор компонентов медиаторной системы, которые необходимо варьировать в зависимости от круга анализируемых соединений, особенно в апротонных средах для анализа органических соединений. Кроме того, при предложенном алгоритме не учитывается влияние матрицы изучаемого объекта на изменение потенциала системы. Также в данном способе в органических растворителях предлагается применять систему ферроцен/феррициний, использование которой несмотря на хорошую обратимость крайне затруднительно из-за неустойчивости ионов феррициния. И как было отмечено, использование системы I2/I- снижает точность получаемых результатов.

Задачей, решаемой данным изобретением, служит повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга используемых реагентов и растворителей, анализируемых веществ.

Задача решается тем, что в качестве реагента используют только одну окисленную или восстановленную форму металла в составе комплексного соединения. Таким образом, расширяется круг используемых реагентов и круг исследуемых объектов в различных растворителях. Благодаря тому, что концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла. За счет быстрого протекания реакции и быстрого установления равновесия в растворе увеличивается экспрессность анализа. Измерение потенциала проводится после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом и последующей добавки раствора реагента или анализируемого вещества, что также приводит к увеличению экспрессности анализа. Анализ проводится путем введения двух последовательных добавок сначала анализируемого вещества в раствор реагента, а затем добавки также раствора анализируемого вещества или реагента. Таким образом, это позволяет учесть влияние матрицы сложных объектов на изменение потенциала и повысить воспроизводимость, точность, достоверность. Также в случае второй добавки реагента, а не анализируемого вещества, значительно экономится объем исследуемого объекта в тех случаях, когда это необходимо.

Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки реагента или анализируемого вещества.

В качестве реагента может быть использована окисленная форма металла в составе комплексного соединения. В этом случае антиоксиданты в составе анализируемого вещества реагируют с окисленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αАОА=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где АОА - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,203

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C′ - концентрация окисленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагента может быть использована восстановленная форма металла в составе комплексного соединения. В этом случае оксиданты в составе анализируемого вещества реагируют с восстановленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Оксидантную активность рассчитывают по формуле:

,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, то определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Оксидантную активность в этом случае рассчитывают по формуле:

,

где OA -оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

Е1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора восстановленной формы реагента, B;

C′ - концентрация восстановленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

Таким образом, в обобщенном виде антиоксидантную/оксидантную активность рассчитывают по формулам:

1) по двукратной добавке анализируемого вещества:

,

где AOA - антиоксидантная активность, М-экв;

OA - оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора;

2) по однократной добавке анализируемого вещества и последующей добавке реагента

,

где AOA - антиоксидантная активность, М-экв;

OA- оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C - концентрация окисленной/восстановленной формы реагента во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагентов могут быть использованы комплексные соединения металлов переменной валентности с неорганическими лигандами, например K3[Fe(CN)6], K4[Fe(CN)6], K3[Mn(CN)6], K4[Mn(CN)6], K3[Mo(CN)8], K4[Mo(CN)8], [Fe(SCN)3], [Fe(SCN)2], также комплексные соли металлов переменной валентности с органическими лигандами, например тетраэтиламмония гексацианоферрат (III), тетраэтиламмония гексацианоферрат (II), тетрабутиламмония гексацианоманганат (III), тетраэтиламмония тетрахлороферрат (III), тетраэтиламмония тетрахлороферрат (II), Fe(II)-PDT, Fe(II)-TPTZ, Fe(III)-TPTZ, дикетонаты железа, никеля, кобальта. В качестве растворителей используются гидрофильные, гидрофобные и смешанные растворители.

В качестве протонных растворителей могут быть использованы вода, спирты и др., в качестве апротонных: хлороформ, ацетонитрил, гексан, ацетон и различные эфиры. Также может быть использована смесь растворителей.

Рабочий электрод может быть изготовлен из платины, золота стеклоуглерода.

Электродом сравнения в водных растворах может служить стандартный хлорсеребряный электрод, в органических растворителях - двуключевой хлоридсеребрянный электрод, первая емкость которого заполнена водой, содержащей хлорид-ионы, вторая емкость - органическим растворителем, например ацетонитрилом, содержащим, например, перхлорат лития или тетраэтиламмония тетрафторборат. В органических средах также может быть использован электрод первого рода Ag/AgNO3 в органическом растворителе.

Указанные отличия существенны. Использование в качестве реагента одной окисленной или восстановленной формы металла в составе комплексного соединения позволяет расширить круг используемых реагентов и круг исследуемых объектов в различных растворителях. Концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, поэтому химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла, что увеличивает экспрессность метода. Измерение потенциала проводится после прохождения химической реакции, что сокращает число измерительных стадий и также увеличивает экспрессность метода. Введение двух последовательных добавок раствора анализируемого вещества существенно повышает точность, достоверность и воспроизводимость результатов, что позволяет анализировать различные объекты со сложной матрицей.

В настоящее время из патентной и научно-технической литературы не известен способ определения антиоксидантной/оксидантной активности в заявляемой совокупности признаков.

На фиг.1 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] двух добавок аскорбиновой кислоты в водной среде.

На фиг.2 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)2] двух добавок пероксида водорода в водной среде.

На фиг.3 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] аскорбиновой кислоты и последующей добавки [Fe(SCN)3].

На фиг.4 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] зеленого чая и последующей добавки [Fe(SCN)3].

На фиг.5 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок раствора токоферола в хлороформе (электролит: 0,05М тетраэтиламмония тетрофторборат).

На фиг.6 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок нерафинированного подсолнечного масла (электролит: 0,05М тетраэтиламмония тетрофторборат).

Способ иллюстрируется следующими примерами.

Пример 1

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,075 мл 0,02М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 446 мВ. Далее вносят вторую добавку 0,019 мл того же раствора аскорбиновой кислоты. Установившееся значение потенциала (E2) составляет 412 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+AKOX,

где AK - аскорбиновая кислота, AKOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.1. Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения второй добавки раствора аскорбиновой кислоты, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,04 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 2

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)2], в фосфатном буферном растворе опускают рабочий электрод и электрод сравнения и вносят 0,060 мл 0,01М раствора Н2O2. Установившееся значение потенциала (E1) составляет 272 мВ. Далее вносят вторую добавку 0,060 мл того же раствора Н2O2. Установившееся значение потенциала (E2) составляет 298 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)2]+H202=n[Fe(SCN)3]+H2O2Red,

где H2O2Red - продукты восстановления пероксида водорода.

Результаты измерений приведены на фиг.2.

Оксидантную активность в этом случае рассчитывают по формуле:

,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента [Fe(SCN)2] в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора Н2O2, B;

E2 - потенциал, измеренный после введения второй добавки раствора Н2O2, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления OA равна 0,02 M-экв, что соответствует двухэлектронному восстановлению пероксида водорода.

Пример 3

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл 0,01375М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 442 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 464 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+АКOX,

где AK - аскорбиновая кислота, АКOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.3. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C - концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что AOA равна 0,027 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 4

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл зеленого чая в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 431 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 455 мВ.

Результаты измерений приведены на фиг.4.

Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M; α=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора зеленого чая, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C′- концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что АОА равна 0,036 М-экв.

Пример 5

В 5 мл раствора, содержащего 0,01М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 0,25 мл 0,060 М раствора токоферола в хлороформе. Установившееся значение потенциала (E1) составляет 469 мВ.

Далее вносят такое же количество токоферола. Установившееся значение потенциала (E2) составляет 438 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+токоферол=n[Fe(SCN)2]+токоферолOX,

где токоферолOX - продукт окисления токоферола.

Результаты измерений приведены на фиг.5.

Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора токоферола, B;

E2 - потенциал, измеренный после введения второй добавки раствора токоферола, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,058 M-экв, что соответствует наличию одной функциональной группы в молекуле токоферола, определяющей его антиоксидантные свойства, что соответствует действительности.

Пример 6

В 5 мл раствора, содержащего 0,001М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 1 мл подсолнечного нерафинированного масла в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 515 мВ. Далее вносят такое же количество нерафинированного масла. Установившееся значение потенциала (E2) составляет 469 мВ.

Результаты измерений приведены на фиг.6.

Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора нерафинированного масла, B;

E2 - потенциал, измеренный после введения второй добавки раствора нерафинированного масла, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления АОА равна 0,0022 М-экв.


СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 115.
26.08.2017
№217.015.d7e4

Плавниковый лопастной движитель для плавсредств надводного и подводного плавания (варианты)

Изобретение относится к судостроению, а именно к плавсредствам. Плавниковый лопастной движитель для плавсредств надводного и подводного плавания включает в себя вариант конструкции надводного судна, которое содержит по обе стороны от осевой линии судна протяженные кормовые плавники с окнами,...
Тип: Изобретение
Номер охранного документа: 0002622519
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.dfb0

Способ извлечения палладия с помощью полисилоксана

Изобретение относится к способам извлечения микроколичеств благородного металла, такого как палладий, из разбавленных растворов. Cпособ извлечения палладия из многокомпонентных растворов включает перемешивание дитиооксамидированного полисилоксана с раствором, в котором при помощи ацетатной...
Тип: Изобретение
Номер охранного документа: 0002625205
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.e02d

Способ термомеханической обработки прутков из двухфазных титановых сплавов для получения низких значений термического коэффициента линейного расширения в направлении оси прутка

Изобретение относится к области металлургии, а именно к способам термомеханической обработки прутков из двухфазных титановых сплавов. Способ термомеханической обработки прутков из двухфазных титановых сплавов с молибденовым эквивалентом от 3,3 до 22% включает закалку прутка и его холодную...
Тип: Изобретение
Номер охранного документа: 0002625376
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.ea7f

Способ изучения бинарного бариево-литиевого сплава и устройство для его осуществления

Группа изобретений относится к технической физике применительно к изучению образцов двухкомпонентных металлических сплавов, а именно исследованиям термозависимостей физических свойств расплавов образцов химически активных сплавов. При осуществлении способа используют образцы шихты изучаемого...
Тип: Изобретение
Номер охранного документа: 0002628036
Дата охранного документа: 14.08.2017
19.01.2018
№218.016.00d7

Устройство для фотометрического определения удельного электросопротивления металлических расплавов

Изобретение относится к анализу материалов путем фотометрического определения удельного электросопротивления нагреваемого тела в зависимости от температуры, в частности к определению удельного электросопротивления металлов и сплавов в жидком состоянии. Устройство содержит компьютер, источник...
Тип: Изобретение
Номер охранного документа: 0002629699
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1b54

Способ наноструктурирующего упрочнения поверхностного слоя прецизионных деталей выглаживанием и система для его осуществления

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем....
Тип: Изобретение
Номер охранного документа: 0002635987
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.36be

Сцинтилляционный гамма-спектрометр

Изобретение относится к области сцинтилляционных γ-спектрометров, точнее к спектрометрам энергий на основе сцинтилляторов NaI:Tl, CsI:Tl, CsI:Na, LaCl:Ce и других, характеризующихся многокомпонентными световыми вспышками с сильной зависимостью постоянных времени высвечивания от температуры...
Тип: Изобретение
Номер охранного документа: 0002646542
Дата охранного документа: 05.03.2018
16.06.2018
№218.016.63b4

Сырьевая смесь для зольного аглопоритового гравия

Изобретение относится к технологиям производства пористых заполнителей для промышленного, гражданского и дорожного строительства. Технической задачей изобретения является разработка состава сырьевой смеси, обеспечивающего повышение теплоизоляционных свойств зольного гравия посредством...
Тип: Изобретение
Номер охранного документа: 0002657567
Дата охранного документа: 14.06.2018
25.06.2018
№218.016.6676

Способ изготовления и состав пасты для толстопленочного резистора

Изобретение относится к способу изготовления пасты для толстопленочного резистора. Порошки молибдена, тантала, магния и кремния смешивают, прессуют в штабик и помещают в герметичный реактор. Реактор заполняют инертным газом и приводят штабик в контакт с раскаленной проволокой. В результате в...
Тип: Изобретение
Номер охранного документа: 0002658644
Дата охранного документа: 22.06.2018
02.03.2019
№219.016.d1e7

Способ гамма-радиографической интроскопии

Изобретение относится к области радиографической интроскопии, точнее к гамма-радиографической интроскопии массивных деталей и заготовок из тяжелых металлов. Способ гамма-радиографической интроскопии дополнительно содержит этапы, на которых располагают детекторы на минимальном расстоянии между...
Тип: Изобретение
Номер охранного документа: 0002680849
Дата охранного документа: 28.02.2019
Показаны записи 101-110 из 168.
10.01.2015
№216.013.1dfc

Способ изготовления безгистерезисного актюатора с линейной пьезоэлектрической характеристикой

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических актюаторов, характеризующихся широким интервалом рабочих температур, в частности для изготовления прецизионных безгистерезисных сканеров сканирующих зондовых микроскопов и устройств...
Тип: Изобретение
Номер охранного документа: 0002539104
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2254

Сталь для изготовления кованых прокатных валков

Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб. Сталь содержит компоненты при следующем соотношении, мас.%: углерод (С) 1,2-1,4, кремний (Si) 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002540241
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22a0

Способ переработки алюминиевого шлака

Изобретение относится к вторичной металлургии, в частности, к способу переработки алюминиевого шлака. Способ включает измельчение алюминиевого шлака, выделение металлического алюминия, смешивание остатка после выделения металлического алюминия с компонентом, содержащим окислы железа, спекание,...
Тип: Изобретение
Номер охранного документа: 0002540317
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2773

Система предотвращения аварий карьерного автомобиля

Изобретение относится к системам повышения безопасности движения карьерных автомобилей. Система предотвращения аварий карьерного автомобиля с антиблокировочной системой тормозов содержит две штанги, установленные на горизонтальном кронштейне кузова с возможностью поворота в вертикальное и...
Тип: Изобретение
Номер охранного документа: 0002541556
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a0c

Способ получения цилиндрической заготовки в виде прутка из металлического армированного композиционного материала

Изобретение относится к области металлургии, а именно к методам получения заготовок типа прутков из композиционных материалов литейными технологиями. Способ включает размещение в цилиндрической емкости проволоки из упрочняющего металлического материала, расплавление металла матрицы, заполнение...
Тип: Изобретение
Номер охранного документа: 0002542221
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b16

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов...
Тип: Изобретение
Номер охранного документа: 0002542487
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ba8

Лазерный толщиномер и способ его калибровки

Изобретение относится к измерительной технике, а именно к калибровке лазерных толщиномеров, построенных по методу лазерной триангуляции, при котором пучки излучения направлены с двух сторон перпендикулярно к контролируемой поверхности, а принятый оптический сигнал фиксируется многоэлементным...
Тип: Изобретение
Номер охранного документа: 0002542633
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e4c

Применение 2-морфолино-5-фенил-6н-1,3,4-тиадизин, гидробромида в качестве средства, изменяющего суммарную мощность спектра вариабельности сердечного ритма и обладающего антибрадикардическими свойствами

Изобретение относится к области профилактической медицины, отдельных специальных разделов клинической медицины и к области биологически активных соединений. Предложено применение гидробромида 2-морфолино-5-фенил-6H-1,3,4-тиадизина в качестве средства, изменяющего суммарную мощность спектра...
Тип: Изобретение
Номер охранного документа: 0002543320
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.391f

Способ получения фенацетина

Изобретение относится к способу получения фенацетина. Способ осуществляют путем восстановления п-этоксинитробензола, проводимым в изопропиловом спирте при перемешивании с катализатором Ni-Ренея под давлением водорода 2-4 атм при 60-70°C в присутствии уксусного ангидрида, ацилирования...
Тип: Изобретение
Номер охранного документа: 0002546111
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b7c

Способ определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон

Использование: для определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон. Сущность изобретения заключается в том, что изготавливают из эпоксидной смолы таблетку-держатель с образцами анализируемых стекловолокон и проводят последующий анализ...
Тип: Изобретение
Номер охранного документа: 0002546716
Дата охранного документа: 10.04.2015
+ добавить свой РИД