×
27.10.2014
216.013.02b4

Результат интеллектуальной деятельности: АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ АППАРАТОМ ВОЗДУШНОГО ОХЛАЖДЕНИЯ МАСЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к аппаратам воздушного охлаждения и может использоваться для охлаждения масла газоперекачивающих агрегатов. Адаптивная система управления аппаратом воздушного охлаждения масла содержит блок 1 задания температуры, пропорционально-интегральный регулятор 2, блок 3 умножения, частотный преобразователь 4, асинхронный двигатель 5, вентилятор 6, теплообменник 7, датчик 8 температуры масла, блок 9 форсирования, датчик 10 температуры воздуха, пропорциональное звено 11. Предлагаемая адаптивная система управления аппаратом воздушного охлаждения масла позволяет обеспечить работу без перенастройки регуляторов. 4 ил.
Основные результаты: Адаптивная система управления аппаратом воздушного охлаждения масла, содержащая блок задания температуры, пропорционально-интегральный регулятор, частотный преобразователь, асинхронный двигатель, вентилятор, теплообменник и датчик температуры масла, причем выход блока задания температуры соединен с первым входом пропорционально-интегрального регулятора, выход частотного преобразователя соединен с асинхронным двигателем, кинематически связанным с вентилятором, вентилятор воздействует потоком воздуха на теплообменник, оснащенный датчиком температуры масла, отличающаяся тем, что она дополнительно снабжена блоком форсирования, датчиком температуры воздуха, пропорциональным звеном и блоком умножения, причем выход датчика температуры масла соединен с входом блока форсирования, выход которого соединен с вторым входом пропорционально-интегрального регулятора, выход датчика температуры воздуха соединен с входом пропорционального звена, выход которого соединен с первым входом блока умножения, выход пропорционально-интегрального регулятора соединен с вторым входом блока умножения, выход которого соединен с входом частотного преобразователя.

Изобретение относится к аппаратам воздушного охлаждения (АВО) и в частности может использоваться для охлаждения масла газоперекачивающих агрегатов.

Наиболее близкой по технической сущности является система управления аппаратом воздушного охлаждения масла (см. Россеев Н.Н. Создание энергоэффективной системы автоматического управления аппаратами воздушного охлаждения масла на основе частотно-регулируемого электропривода // Диссертация на соискание ученой степени кандидата технических наук. - Самара: Самарский государственный технический университет, 2006, с.60-72), содержащая блок задания температуры, пропорционально-интегрально-дифференциальный регулятор, частотный преобразователь, асинхронный двигатель, вентилятор, теплообменник и датчик температуры.

Недостаток наиболее близкой по технической сущности системы управления аппаратом воздушного охлаждения масла заключается в том, что при изменении температуры охлаждающего воздуха в широких пределах она требует перенастройки регуляторов.

Сущность изобретения состоит в том, что адаптивная система управления аппаратом воздушного охлаждения масла, содержащая блок задания температуры, пропорционально-интегральный регулятор, частотный преобразователь, асинхронный двигатель, вентилятор, теплообменник и датчик температуры масла, причем выход блока задания температуры соединен с первым входом пропорционально-интегрального регулятора, выход частотного преобразователя соединен с асинхронным двигателем, кинематически связанным с вентилятором, вентилятор воздействует потоком воздуха на теплообменник, оснащенный датчиком температуры масла, дополнительно снабжена блоком форсирования, датчиком температуры воздуха, пропорциональным звеном и блоком умножения, причем выход датчика температуры масла соединен с входом блока форсирования, выход которого соединен с вторым входом пропорционально-интегрального регулятора, выход датчика температуры воздуха соединен с входом пропорционального звена, выход которого соединен с первым входом блока умножения, выход пропорционально-интегрального регулятора соединен с вторым входом блока умножения, выход которого соединен с входом частотного преобразователя.

Существенные отличия находят свое выражение в новой совокупности связей между элементами устройства. Указанная совокупность связей позволяет обеспечить работу системы управления аппаратом воздушного охлаждения масла без перенастройки регуляторов.

На фиг.1 приведена функциональная схема адаптивной системы управления аппаратом воздушного охлаждения масла; на фиг.2 - структурная схема адаптивной системы управления аппаратом воздушного охлаждения масла, на фиг.3 - расчетная модель адаптивной системы управления аппаратом воздушного охлаждения масла; на фиг.4 - переходные процессы по управляющему воздействию.

Адаптивная система управления аппаратом воздушного охлаждения масла (фиг.1) содержит блок 1 задания температуры, пропорционально-интегральный регулятор 2, блок 3 умножения, частотный преобразователь 4, асинхронный двигатель 5, вентилятор 6, теплообменник 7, датчик 8 температуры масла, блок 9 форсирования, датчик 10 температуры воздуха, пропорциональное звено 11.

Выход блока 1 задания температуры соединен с первым входом пропорционально-интегрального регулятора 2. Выход частотного преобразователя 4 соединен с асинхронным двигателем 5, кинематически связанным с вентилятором 6. Вентилятор 6 воздействует потоком воздуха на теплообменник 7, оснащенный датчиком 8 температуры масла. Выход датчика 8 температуры масла соединен с входом блока 9 форсирования, выход которого соединен с вторым входом пропорционально-интегрального регулятора 2. Выход датчика 10 температуры воздуха соединен с входом пропорционального звена 11, выход которого соединен с первым входом блока 3 умножения. Выход пропорционально-интегрального регулятора 2 соединен с вторым входом блока 3 умножения, выход которого соединен с входом частотного преобразователя 4.

Блок 1 задания параметров, пропорционально-интегральный регулятор 2, блок 3 умножения, частотный преобразователь 4, блок 9 форсирования и пропорциональное звено 11 могут быть реализованы, например, на частотном преобразователе MICROMASTER 430 фирмы Siemens с помощью его внутренних функциональных возможностей и BICO-технологии программирования. В частности, параметром P2200 может быть разрешено использование, например, технологического регулятора. Параметрами P2201 и P2253 формируется фиксированное задание регулятору, параметром P2264 - источник обратной связи для технологического регулятора, например, первый аналоговый вход. Параметром P2280 задается коэффициент усиления, а параметром P2285 - постоянная времени пропорционально-интегрального регулятора 2. Параметром P2263 выбирается тип технологического регулятора, позволяющий применение блока 9 форсирования в цепи обратной связи, параметром P2271 - тип обратной связи. Параметр P2274 определяет величину постоянной времени блока 9 форсирования. Параметрами P2800 и Р2802 разрешается применение блока 3 умножения. Пропорциональное звено 11 может быть реализовано, например, масштабированием второго аналогового входа, через который заводится, например, сигнал с датчика 10 температуры воздуха. Масштабирование производится посредством параметров P0757-P0760. Следует отметить, что блок 1 задания параметров, пропорционально-интегральный регулятор 2, блок 3 умножения, блок 8 форсирования и пропорциональное звено 11, могут быть реализованы также программно на микропроцессорном контроллере. В качестве асинхронного двигателя 4 может быть взят, например, двигатель 4А132М8У3, применяемый в аппаратах воздушного охлаждения масла. Вентилятор 5 представляет собой, например, рабочее колесо ГАЦ-12,4-6, закрепленное на валу асинхронного двигателя 4. Теплообменник 6, может быть реализован, например, аналогично теплообменнику венгерского производства типа 06-10. В качестве датчиков 8 и 10 температуры масла и воздуха, например, могут быть использованы датчики КОРУНД-ТМ-01-2. Датчик 8 температуры масла устанавливается на выходе теплообменника, а датчик 10 температуры воздуха - на входе воздухозаборника АВО.

Адаптивная система управления аппаратом воздушного охлаждения масла работает следующим образом. В соответствии с величиной задающего сигнала, поступающего с выхода блока 1 задания температуры, и сигнала с датчика 8 температуры масла блок 9 форсирования в совокупности с пропорционально-интегральным регулятором 2 формируют сигнал на втором входе блока 3 умножения. Одновременно сигнал с датчика 10 температуры воздуха, пройдя через пропорциональное звено 11, поступает на первый вход блока 3 умножения. Результирующий сигнал, полученный на выходе блока 3 умножения, поступает на вход частотного преобразователя 4. Частотный преобразователь 4 преобразует этот сигнал в напряжение определенной амплитуды и частоты на статорных обмотках асинхронного двигателя 5. При этом вал асинхронного двигателя 5 начинает вращаться и приводит в движение вентилятор 6, который воздействует на теплообменник 7 потоком охлаждающего воздуха. Изменение скорости вращения асинхронного двигателя 5 и, следовательно, вентилятора 6 продолжается до тех пор, пока величина сигнала с блока 9 форсирования не сравняется с величиной сигнала на выходе блока 1 задания. В результате температура масла на выходе теплообменника 7 стабилизируется на заданном уровне и наблюдается тепловой баланс между потоком воздуха и потоком масла в теплообменнике при требуемой величине температуры.

Пропорционально-интегральный регулятор 2 предназначен для компенсации наибольшей инерционности теплообменника 7 и всех помех, охваченных датчиком 8 температуры масла. Блок 9 форсирования выполняет функцию компенсации инерционности датчика 8 температуры масла. Датчик 10 температуры воздуха, пропорциональное звено 11 и блок 3 умножения предназначены для адаптации выходного сигнала пропорционально-интегрального регулятора 2 при изменении температуры охлаждающего воздуха. Корректный выбор параметров настройки пропорционально-интегрального регулятора 2 и коэффициента передачи пропорционального звена 11 обеспечивает устойчивый режим работы системы управления и требуемую точность поддержания температуры масла на выходе аппарата воздушного охлаждения при любой температуре окружающего воздуха.

Для подтверждения последнего утверждения рассмотрим структурную схему предлагаемой адаптивной системы управления аппарата воздушного охлаждения масла (фиг.2). Она содержит пропорционально-интегральный регулятор с передаточной функцией

где kп и Tи - коэффициент передачи и постоянная времени пропорционально-интегрального регулятора соответственно.

Знак минус в передаточной функции регулятора учитывает, что увеличение его сигнала приводит к уменьшению выходной величины. Датчики температуры масла и воздуха представлены передаточными функциями

где kдТм и TдТм - коэффициент передачи и постоянная времени датчика температуры масла; kдТв и TдТв - коэффициент передачи и постоянная времени датчика температуры воздуха.

Передаточная функция блока форсирования имеет вид:

где постоянная времени выбирается равной

На структурной схеме также изображена передаточная функция процесса теплообмена по отношению к управляющему воздействию - объемному расходу воздуха Gв(p)

где

;

;

Gм и Gв - объемные расходы масла и воздуха; ρв и ρм - плотности воздуха и масла; mм и mв - массы масла и трубки теплообменника; Cм, Cв и Cтр - удельные теплоемкости воздуха, масла и материла трубки теплообменника соответственно; αм и αв - коэффициенты конвективного теплообмена от стенки трубки к воздуху и от масла к стенке трубки соответственно; Fвн и Fнар - внутренняя и наружная площади теплообмена; Tм и Tв - средние значения температур масла и воздуха на выходе аппарата воздушного охлаждения; Tв.вх - среднее значение температуры воздуха на входе аппарата воздушного охлаждения;

Gв0, Tв0 и Tв.вх0 - начальные условия.

Анализ корней знаменателя (6) показывает, что эту передаточную функцию можно записать в виде двойного апериодического звена

где , , причем будем считать, что T22≥T11.

Передаточная функция вентилятора совместно с воздуховодом представлена апериодическим звеном

с переменными коэффициентом передачи и постоянной времени , где a, b и c - коэффициенты аэродинамической характеристики вентилятора; lв и Sв - длина и площадь поперечного сечения воздуховода; ω00 - начальное значение скорости вращения вентилятора.

Передаточная функция асинхронного двигателя представлена динамическим звеном второго порядка

где величины коэффициентов a 00 и a 10 зависят от параметров схемы замещения двигателя, частоты питающего напряжения и закона регулирования амплитуды напряжения в функции частоты.

Частотный преобразователь на структурной схеме представлен безынерционным звеном с коэффициентом передачи kсп, поскольку его инерционностью по сравнению с инерционностью теплообменника можно пренебречь.

Параметры настройки пропорционально-интегрального регулятора выбираются таким образом, чтобы выполнялось равенство

Формула (10) имеет две степени свободы. Поэтому, задаваясь величиной постоянной времени Tи, например, из соотношения:

можно найти требуемое значение kп:

Коэффициент передачи пропорционального звена ka выбирается исходя из величины коэффициента передачи датчика температуры воздуха и диапазона изменения температур охлаждающего воздуха.

В соответствии с выражениями (1)-(12) посчитаны передаточные функции всех элементов адаптивной системы управления АВО масла с асинхронным двигателем 4А132М8У3, рабочим колесом вентилятора ГАЦ-12,4-6, при параметрах теплообменника: Gм=0,0166 м3/с; ρм=843 кг/м3; Cм=1670 Дж/кгК; Cтр=460 Дж/кгК; Cв=1005 Дж/кгК; mм=434 кг; mтр=1544 кг; αм=286 Вт/м2К; Fвн=144 м2; Fнар=1135 м2. Передаточные функции найдены для двух режимов.

В первом режиме приняты начальные условия Gв0=0,54 м3/с; Tв.вх0=-30°C; Tв0=9,089°C; αв=0,504 Вт/м2К; ρв=1,452 кг/м3. При этом передаточные функции элементов системы управления принимают следующие численные значения:

;

; .

Во втором режиме приняты начальные условия: Gв0=27,2 м2/с; Tв.вх0=40°C; Tв0=45,923°C; αв=23 Вт/м2К; ρв=1,118 кг/м3. При этом передаточные функции элементов системы управления принимают следующие численные значения:

;

; .

Коэффициент передачи частотного преобразователя принципиально равен kсп=1. Датчики температуры характеризуется постоянными времени TдТм=TдТв=40 с. Поскольку задающий сигнал в системе управления формируется в тех же величинах, что и выходная величина, то коэффициент передачи датчика температуры масла kдТв=1.

Параметры регуляторов рассчитываются для второго режима: Tи=6,52 с; kп=9,28; Tф=40 с. Коэффициент передачи пропорционального звена (фактически коэффициент адаптации) принят равным ka=0,1.

В соответствии с полученными передаточными функциями в программной среде «Matlab Simulink» разработана расчетная модель адаптивной системы управления АВО масла (фиг.3). Расчетная модель позволяет провести исследование адаптивной системы управления АВО масла по отношению к управляющему воздействию Tз с учетом вариации параметров объекта управления. При настройках регуляторов, выбранных для режима Tв.вх=-30°С, Gв0=0,54 м2/с, одновременно моделирование ведется для противоположного случая с начальными условиями Tв.вх=40°C, Gв0=27,2 м2/с. Отсутствие на расчетной схеме инерционности датчика температуры воздуха объясняется тем, что к моменту изменения задающего воздействия выходной сигнал датчика имеет уже установившееся значение.

Анализ графиков, приведенных на фиг.4, показывает, что разработанная адаптивная система управления обеспечивает работоспособность АВО масла во всем возможном диапазоне изменения параметров объекта управления. Кривая 1 соответствует начальным условиям Tв.вх=-30°C, Gв0=0,54 м2/с, а кривая 2 - Tв.вх=40°C, Gв0=27,2 м3/с. При этом время переходного процесса варьируется в пределах tпп=86,5÷127 с, несмотря на то, что коэффициент передачи объекта управления изменяется почти в 15 раз.

Таким образом, предлагаемая адаптивная система управления аппаратом воздушного охлаждения масла позволяет обеспечить работу без перенастройки регуляторов.

Адаптивная система управления аппаратом воздушного охлаждения масла, содержащая блок задания температуры, пропорционально-интегральный регулятор, частотный преобразователь, асинхронный двигатель, вентилятор, теплообменник и датчик температуры масла, причем выход блока задания температуры соединен с первым входом пропорционально-интегрального регулятора, выход частотного преобразователя соединен с асинхронным двигателем, кинематически связанным с вентилятором, вентилятор воздействует потоком воздуха на теплообменник, оснащенный датчиком температуры масла, отличающаяся тем, что она дополнительно снабжена блоком форсирования, датчиком температуры воздуха, пропорциональным звеном и блоком умножения, причем выход датчика температуры масла соединен с входом блока форсирования, выход которого соединен с вторым входом пропорционально-интегрального регулятора, выход датчика температуры воздуха соединен с входом пропорционального звена, выход которого соединен с первым входом блока умножения, выход пропорционально-интегрального регулятора соединен с вторым входом блока умножения, выход которого соединен с входом частотного преобразователя.
АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ АППАРАТОМ ВОЗДУШНОГО ОХЛАЖДЕНИЯ МАСЛА
АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ АППАРАТОМ ВОЗДУШНОГО ОХЛАЖДЕНИЯ МАСЛА
АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ АППАРАТОМ ВОЗДУШНОГО ОХЛАЖДЕНИЯ МАСЛА
АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ АППАРАТОМ ВОЗДУШНОГО ОХЛАЖДЕНИЯ МАСЛА
Источник поступления информации: Роспатент

Показаны записи 41-49 из 49.
10.01.2016
№216.013.9f2d

Цифровой регулятор для системы управления электромагнитным подшипником

Изобретение относится к машиностроению и может быть использовано в роторных механизмах на электромагнитных опорах. Технический результат - уменьшение амплитуды колебания ротора в электромагнитном подшипнике. Цифровой регулятор для системы управления электромагнитным подвесом ротора содержит...
Тип: Изобретение
Номер охранного документа: 0002572386
Дата охранного документа: 10.01.2016
10.04.2016
№216.015.3070

Следящий электропривод с асинхронным исполнительным двигателем

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с асинхронными исполнительными двигателями. Техническим результатом является повышение быстродействия следящего электропривода с асинхронным исполнительным двигателем. Следящий электропривод...
Тип: Изобретение
Номер охранного документа: 0002580823
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.6f30

Цифровой модулятор для силового преобразователя электромагнитного подшипника

Изобретение относится к импульсной технике и может быть использовано в силовых преобразователях электромагнитных подшипников. Техническим результатом является упрощение конструкции цифрового модулятора для силового преобразователя электромагнитного подшипника. Цифровой модулятор для силового...
Тип: Изобретение
Номер охранного документа: 0002597513
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.8739

Цифровой широтно-импульсный модулятор

Изобретение относится к импульсной технике и может быть использовано в ключевых усилителях мощности. Техническим результатом является упрощение технической реализации цифрового широтно-импульсного модулятора. Такой результат достигается за счет того, что цифровой широтно-импульсный модулятор...
Тип: Изобретение
Номер охранного документа: 0002603546
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8b69

Система управления погружным электроцентробежным насосом и кустовой насосной станцией

Изобретение относится к системам управления добычей нефти и может использоваться для вывода скважин, оборудованных установкой электроцентробежного насоса, на стационарный режим работы, а также в процессе длительной эксплуатации скважины. Система управления погружным электроцентробежным насосом...
Тип: Изобретение
Номер охранного документа: 0002604473
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.91c4

Система управления погружным электроцентробежным насосом

Изобретение относится к системам управления добычей нефти и может использоваться для вывода скважин, оборудованных установкой электроцентробежного насоса, на стационарный режим работы. Система управления погружным электроцентробежным насосом содержит блок (1) задания частоты, мультиплексор (2),...
Тип: Изобретение
Номер охранного документа: 0002605871
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9e7a

Следящий электропривод

Изобретение относится к электротехнике, а именно к следящему электроприводу. Следящий электропривод содержит блок 1 задания, интегральный регулятор 2, пропорциональный регулятор 3, пропорционально-дифференциальный регулятор 4, силовой преобразователь 5, электродвигатель 6 с исполнительным...
Тип: Изобретение
Номер охранного документа: 0002605948
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.d2d9

Следящий электропривод с асинхронным исполнительным двигателем

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с асинхронными исполнительными двигателями. Техническим результатом является повышение быстродействия следящего электропривода с асинхронным исполнительным двигателем. Следящий электропривод...
Тип: Изобретение
Номер охранного документа: 0002621716
Дата охранного документа: 07.06.2017
13.02.2018
№218.016.267d

Цифровой модулятор для преобразования частоты

Изобретение относится к области импульсной техники и может быть использовано в преобразователях частоты для управления электродвигателями переменного тока. Технический результат заключается в формировании различных законов регулирования напряжения в функции частоты силового преобразователя и...
Тип: Изобретение
Номер охранного документа: 0002644070
Дата охранного документа: 07.02.2018
Показаны записи 41-50 из 88.
20.09.2014
№216.012.f516

Способ определения прочности сцепления покрытия с основой

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой. Технический результат достигается тем, что на основу наносят покрытие в виде «сидячей» капли, прикладывают к нему усилие и по величине разрушающей...
Тип: Изобретение
Номер охранного документа: 0002528575
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f52d

Способ получения модификатора для алюминиевых сплавов

Изобретение относится к литейному и металлургическому производству, в частности к получению модификатора для алюминиевых сплавов. Способ включает смешивание порошка носителя с ультрадисперсным модифицирующим порошком в планетарной мельнице и прессование полученной композиции. В качестве...
Тип: Изобретение
Номер охранного документа: 0002528598
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f63f

Способ культивирования хлебопекарных дрожжей

Изобретение относится к биотехнологии и может быть использовано для культивирования хлебопекарных дрожжей. Способ предусматривает приготовление стерильной питательной среды, содержащей 8-10% сахарозы и 10% водной вытяжки из свежепророщенных семян мака Papaver somniferum. Культивирование...
Тип: Изобретение
Номер охранного документа: 0002528872
Дата охранного документа: 20.09.2014
20.10.2014
№216.012.ff93

Способ окисления растительных масел

Изобретение относится к технологии получения предназначенных для воздушной сушки масляных пленкообразующих из низкосортных, сильно обводненных, некондиционных кислых растительных масел и может быть использовано в лакокрасочной и других отраслях промышленности, применяющих масляные...
Тип: Изобретение
Номер охранного документа: 0002531283
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.0734

Способ получения пвсевдолигатуры для алюминиевых сплавов

Изобретение относится к литейному и металлургическому производству, в частности к получению псевдолигатуры для модифицирования алюминиевых сплавов. Способ включает смешивание в планетарной мельнице полученного по технологии самораспространяющегося высокотемпературного синтеза ультрадисперсного...
Тип: Изобретение
Номер охранного документа: 0002533245
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0742

Способ обработки некруглых отверстий

Изобретение относится к машиностроению и может быть использовано в подшипниковой промышленности при обработке кромок отверстий сепараторов крупногабаритных подшипников. Способ включает сообщение копировальным головкам с резцами формообразующих движений относительно обрабатываемой детали при...
Тип: Изобретение
Номер охранного документа: 0002533259
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0890

Парогазовая установка с паротурбинным приводом компрессора и высоконапорным парогенератором

Изобретение относится к энергетике. Парогазовая установка с паротурбинным приводом компрессора и высоконапорным парогенератором, содержащая компрессор, высоконапорный парогенератор, газовую турбину, котел-утилизатор, вакуумный деаэратор, конденсационную паровую турбину, противодавленческую...
Тип: Изобретение
Номер охранного документа: 0002533593
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0898

Энергетическая установка с парогазовой установкой

Изобретение относится к энергетике. Энергетическая установка, включающая парогазовую установку, может применяться для надстройки паротурбинных энергоблоков, причем надстраивают парогазовой установкой с приводом компрессора от конденсационной паровой турбины с суперсверхкритическими начальными...
Тип: Изобретение
Номер охранного документа: 0002533601
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08d2

Автономное радиолокационное устройство селекции воздушной цели

Изобретение относится к радиолокационным средствам ближнего действия. Достигаемый технический результат - повышение помехоустойчивости к пассивным помехам радиолокаторов ближнего действия (РБД) в условиях отсутствия априорных сведений о месте и времени появления реальной цели при относительно...
Тип: Изобретение
Номер охранного документа: 0002533659
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0db0

Установка для подготовки подпиточной воды теплоэлектроцентрали

Изобретение относится к энергетике. Установка для подготовки подпиточной воды теплоэлектроцентрали содержит паровую турбину с промышленным отбором пара и конденсатором со встроенным пучком, химводоочистку, вакуумный деаэратор, трубопроводы сырой, умягченной подпиточной воды, прямой и обратной...
Тип: Изобретение
Номер охранного документа: 0002534921
Дата охранного документа: 10.12.2014
+ добавить свой РИД