×
10.10.2014
216.012.fc5d

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗМУЩЕНИЙ И БИЕНИЙ ВЕРТИКАЛЬНОЙ ОСИ ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА

Вид РИД

Изобретение

Аннотация: Способ включает использование двух автоколлимационных теодолитов и многогранной зеркальной призмы, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения. Теодолиты наводят на грани многогранной призмы так, чтобы их визирные оси были на одном уровне с многогранной призмой и образовывали между собой угол 90°. При каждой j-ой установке, где j=1,2,…, n - количество граней призмы, вертикальной оси измеряют углы наклона соответствующих граней призмы при прямом и обратном направлении вращения оси. Значение углов считывают по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением. Значения координат V, V вектора возмущений вертикальной оси рассчитывают по формуле: , а значения координат B, B вектора биений - по формуле: B=x x, B=y y, где: x - значение угла наклона j-ой грани, соответствующей первому теодолиту, и измеренное им при прямом и обратном направлении вращения оси; y - значение угла наклона j-ой грани, соответствующей второму теодолиту, и измеренное им при прямом и обратном направлении вращения оси. Технический результат - упрощение и уменьшение времени, необходимого на расчет возмущений и биений вертикальных осей. 4 ил.
Основные результаты: Способ определения возмущений и биений вертикальной оси опорно-поворотного устройства, заключающийся в том, что используют два прибора, измеряющих угловые координаты, при этом в процессе измерений проходят рабочий диапазон вращения вертикальной оси в прямом и обратном направлении с остановками через равные интервалы углов поворота и снимают показания углов наклона, отличающийся тем, что в измерительную систему вводят многогранную зеркальную призму, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения, а в качестве приборов, измеряющих угловые координаты, используют два автоколлимационных теодолита, при этом теодолиты наводят на грани многогранной призмы, причем располагают их таким образом, чтобы визирные оси теодолитов были на одном уровне с многогранной призмой и образовывали между собой угол, равный 90°, и при каждой j-ой установке (где j=1,2,…,n - количество граней призмы) вертикальной оси теодолитами измеряют углы наклона соответствующих граней призмы при прямом и обратном направлении вращения оси, значение углов считывают по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением, тогда значения координат (V, V) вектора возмущений вертикальной оси рассчитывают по формуле: а значения координат (B, B) вектора биений вертикальной оси рассчитывают по формуле:B=x x B=y y где:x - значение угла наклона j-ой грани, соответствующей первому теодолиту, и измеренное им при прямом и обратном направлении вращения оси;y - значение угла наклона j-ой грани, соответствующей второму теодолиту, и измеренное им при прямом и обратном направлении вращения оси.

Изобретение относится к измерительной технике. Предлагаемый способ применяется для измерения и оценки возмущений и биений вертикальной оси опорно-поворотного устройства (ОПУ).

Известен способ измерения возмущений и биений вертикальных осей опорно-поворотных устройств (Грызулин С.И. Юстировка оптических трактов: Монография. - М.: Макс Пресс, 2011. - 100-102 с.), который является наиболее близким по совокупности существенных признаков к предлагаемому изобретению.

Способ заключается в том, что на вращающей части опорно-поворотного устройства укрепляют пару взаимно перпендикулярных цилиндрических уровней или двухкоординатный датчик наклона, измеряющий угловые координаты свободного вектора в системе отвесной линии. На фиг.1 показана схема реализации способа, где: 1 - ось вращения; 2 - инструментальный вектор; 3, 4 - цилиндрические уровни; 5 - отвесная линия. В этом случае вектор образуется линией пересечения плоскостей, проходящих через нуль - пункты уровней или отсчетных плоскостей датчика наклона. В процессе измерений проходят рабочий диапазон осевой системы, как минимум два раза, в прямом и обратном направлении с остановками через равные интервалы углов поворота и берут отсчеты по уровням. Для перехода к координатам инструментального вектора в неподвижной системе необходимо знать ориентировку уровней относительно меридиана места в начальном положении. Пересчет показаний уровней в угловые величины выполняют в соответствии с инструкцией по применению приборов. Затем вычисляют координаты точек годографа, умножая матрицы измеренных координат инструментального вектора на матрицы поворота системы координат. После аппроксимации годографа вычисляются координаты осевого вектора. Изучая траекторию осевого вектора, получают необходимые характеристики вращения, а именно возмущения (колебания оси с достаточной точностью повторяются при новых циклах вращения) и биения (колебания оси носят случайный характер).

Недостатком прототипа является сложность математического расчета, необходимость создания площадки под установку уровней или датчика на этапе конструирования опорно-поворотного устройства.

Задачей данного изобретения является создание способа измерения возмущений и биений вертикальных осей опорно-поворотных устройств, позволяющего сократить время на расчет возмущений и биений вертикальных осей.

Техническим результатом способа является его упрощение и сокращение трудозатрат вследствие сокращения времени, необходимого на расчет возмущений и биений вертикальных осей.

Технический результат достигается за счет того, что в способе определения возмущений и биений вертикальной оси опорно-поворотного устройства, заключающемся в том, что используют два прибора, измеряющих угловые координаты, при этом в процессе измерений проходят рабочий диапазон вращения вертикальной оси в прямом и обратном направлении с остановками через равные интервалы углов поворота и снимают показания углов наклона, новым является то, что в измерительную систему вводят многогранную зеркальную призму, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения, а в качестве приборов, измеряющих угловые координаты, используют два автоколлимационных (АК) теодолита, при этом теодолиты наводят на грани многогранной призмы, причем располагают их таким образом, чтобы визирные оси теодолитов были на одном уровне с многогранной призмой и образовывали между собой угол, равный 90°, и при каждой j-ой установке (где j=l,2,…,n - количество граней призмы) вертикальной оси теодолитами измеряют углы наклона соответствующих граней призмы при прямом и обратном направлении вращения оси, значение углов считывают по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением, тогда значения координат (V1j, V2j) вектора возмущений вертикальной оси рассчитывают по формуле:

,

а значения координат (B1j, B2j) вектора биений вертикальной оси рассчитывают по формуле:

,

где:

xj - значение угла наклона j-ой грани, соответствующей первому теодолиту, и измеренное им при прямом и обратном направлении вращения оси,

yj - значение угла наклона j-ой грани, соответствующей второму теодолиту, и измеренное им при прямом и обратном направлении вращения оси.

Использование зеркальной многогранной призмы, расположенной таким образом, что ее центр совмещен с вертикальной осью вращения, и АК теодолитов для измерения углов наклона граней призмы относительно вертикали позволяет напрямую измерять координаты осевого вектора вращения вертикальной оси без измерения координат инструментального вектора. В данном способе нет необходимости знать ориентировку многогранной призмы и теодолитов относительно меридиана места в начальном положении. Поэтому расчет возмущений и биений вертикальной оси проводится в один этап, подстановкой значений измеренных углов в формулы. Следовательно, преимущество данного способа в простом расчете возмущений и биений.

На фиг.2 показана схема реализации способа на примере альт-азимутальной монтировки с зеркалом, где: 1 - первый теодолит; 2 - второй теодолит; 3 - многогранная зеркальная призма; 4 - зеркало ОПУ; El, Е2 - оси ОПУ.

На фиг.3 показан годограф вектора биения вертикальной оси альт-азимутальной монтировки телескопа MEADE LX200GPS.

На фиг.4 показан годограф вектора возмущения вертикальной оси альт-азимутальной монтировки телескопа MEADE LX200GPS.

Предварительно ось Е1 монтировки выводят в вертикальное положение, затем зеркало (4) поворачивают вокруг оси Е2 на угол Δе2=90°, таким образом, чтобы плоскость зеркала располагалась в горизонтальной плоскости, после чего на его центр устанавливают многогранную призму (3), совмещая ее центр с вертикальной осью вращения.

Первый теодолит (1) наводят на одну из граней многогранной призмы, второй теодолит (2) наводят на соответствующую грань призмы, при этом располагают теодолиты таким образом, чтобы визирные оси теодолитов были на одном уровне с многогранной призмой (3) и образовывали между собой угол, равный 90°. Определение возмущений и биений вертикальной оси с оценкой точности определяемых параметров выполняется из обработки измерений теодолитами в полном диапазоне вращения оси Е1.

Обработка измерений выполняется в следующей последовательности. Исследуемую ось вращают с остановками через равные интервалы углов поворота. При каждой j-ой установке (где j=l,2,…,n - количество граней призмы) вертикальной оси опорно-поворотного устройства теодолитами измеряются наклоны соответствующих граней призмы при прямом (по ходу часовой стрелки) и обратном направлении вращения ОПУ, значение углов считываются по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением.

Вычисляется средняя квадратичная погрешность m и средняя квадратичная погрешность, определяющая качество вращения оси:

,

где mu - средняя квадратичная погрешность, характеризующая инструментальную точность измерений теодолитом.

В примере конкретного выполнения заявляемый способ был реализован с помощью следующих технических средств: двух теодолитов марки 3Т2КА с самоустанавливающимся нулем вертикального круга и многогранной эталонной призмы ПМ-12. В качестве объекта исследования выбрана альт-азимутальная монтировка телескопа MEADE LX200GPS. ОПУ поворачивалось по команде управляющего компьютера на 360° с остановками через 30°. Вращение производилось в прямом (по ходу часовой стрелки) и в обратном направлениях. При каждой остановке теодолитами снимались отсчеты и записывались в журнал наблюдений. Обработка результатов измерений проводилась по вышеуказанной методике.

Исходя из расчетной формулы и точности используемых теодолитов, среднее квадратичное отклонение, определяющее качество вращения оси, составило mE1=15.41".

Способ определения возмущений и биений вертикальной оси опорно-поворотного устройства, заключающийся в том, что используют два прибора, измеряющих угловые координаты, при этом в процессе измерений проходят рабочий диапазон вращения вертикальной оси в прямом и обратном направлении с остановками через равные интервалы углов поворота и снимают показания углов наклона, отличающийся тем, что в измерительную систему вводят многогранную зеркальную призму, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения, а в качестве приборов, измеряющих угловые координаты, используют два автоколлимационных теодолита, при этом теодолиты наводят на грани многогранной призмы, причем располагают их таким образом, чтобы визирные оси теодолитов были на одном уровне с многогранной призмой и образовывали между собой угол, равный 90°, и при каждой j-ой установке (где j=1,2,…,n - количество граней призмы) вертикальной оси теодолитами измеряют углы наклона соответствующих граней призмы при прямом и обратном направлении вращения оси, значение углов считывают по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением, тогда значения координат (V, V) вектора возмущений вертикальной оси рассчитывают по формуле: а значения координат (B, B) вектора биений вертикальной оси рассчитывают по формуле:B=x x B=y y где:x - значение угла наклона j-ой грани, соответствующей первому теодолиту, и измеренное им при прямом и обратном направлении вращения оси;y - значение угла наклона j-ой грани, соответствующей второму теодолиту, и измеренное им при прямом и обратном направлении вращения оси.
СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗМУЩЕНИЙ И БИЕНИЙ ВЕРТИКАЛЬНОЙ ОСИ ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗМУЩЕНИЙ И БИЕНИЙ ВЕРТИКАЛЬНОЙ ОСИ ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗМУЩЕНИЙ И БИЕНИЙ ВЕРТИКАЛЬНОЙ ОСИ ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗМУЩЕНИЙ И БИЕНИЙ ВЕРТИКАЛЬНОЙ ОСИ ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗМУЩЕНИЙ И БИЕНИЙ ВЕРТИКАЛЬНОЙ ОСИ ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗМУЩЕНИЙ И БИЕНИЙ ВЕРТИКАЛЬНОЙ ОСИ ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА
Источник поступления информации: Роспатент

Показаны записи 451-460 из 593.
29.05.2018
№218.016.56bb

Вакуумный разрядник

Изобретение относится к электротехнике и сильноточной электронике, в частности к средствам коммутации, представляет собой вакуумный разрядник, управляемый сфокусированным оптическим излучением, и может использоваться для коммутации сильноточных высоковольтных электрических систем. В герметичной...
Тип: Изобретение
Номер охранного документа: 0002654493
Дата охранного документа: 21.05.2018
09.06.2018
№218.016.5a61

Способ автоматизированного измерения сопротивлений

Изобретение относится к измерительной технике, представляет собой способ автоматизированного измерения сопротивлений и может применяться для удаленного контроля сопротивлений в случае их соизмеримости с сопротивлением линий связи и коммутации. При реализации способа входы двухпроводного...
Тип: Изобретение
Номер охранного документа: 0002655470
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b7e

Стенд для определения массоцентровочных характеристик изделий больших масс

Изобретение относится к области метрологии, приборам контроля действительного положения координат центра масс и массы изделий. Cтенд для определения массоцентровочных характеристик изделий больших масс состоит из устройства массоцентровочных характеристик (МЦХ), корзины балансировочной,...
Тип: Изобретение
Номер охранного документа: 0002655726
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c0f

Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты)

Изобретение относится к способу определения толщины и контроля скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок. В изобретении предусмотрено изготовление и помещение в плазменную установку мишеней из легкого и/или тяжелого элемента (например,...
Тип: Изобретение
Номер охранного документа: 0002655666
Дата охранного документа: 29.05.2018
11.06.2018
№218.016.607b

Самодиагностируемая бортовая вычислительная система с резервированием замещением

Изобретение относится к вычислительной технике и может быть использовано в системах различного назначения, где требуется высокая надежность и радиационная стойкость. Техническим результатом является сокращение времени задействования резервной системы, находящейся в выключенном состоянии, при...
Тип: Изобретение
Номер охранного документа: 0002657166
Дата охранного документа: 08.06.2018
25.06.2018
№218.016.6682

Формирователь кода

Изобретение относится к кодирующим устройствам помехоустойчивого кода, обеспечивающего восстановление передаваемой по каналу связи информации после ее искажений под действием помех. Технический результат – повышение помехоустойчивости и уменьшение времени передачи многобитных посылок....
Тип: Изобретение
Номер охранного документа: 0002658809
Дата охранного документа: 22.06.2018
21.07.2018
№218.016.72f7

Устройство контроля работы генератора

Изобретение относится к импульсной технике и может быть использовано для повышения надежности цифровых систем транспортных устройств в условиях воздействия механических ударов. Устройство контроля работы генератора содержит основной и резервный генераторы, первый и второй логические элементы,...
Тип: Изобретение
Номер охранного документа: 0002661354
Дата охранного документа: 16.07.2018
25.08.2018
№218.016.7ec8

Способ балансировки магниторезистивного датчика

Изобретение относится к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами. Технический результат – балансировка углового магниторезистивного датчика. Способ...
Тип: Изобретение
Номер охранного документа: 0002664868
Дата охранного документа: 23.08.2018
29.08.2018
№218.016.807a

Формирователь меток времени

Изобретение относится к измерительной технике и автоматике. Технический результат заключается в увеличении информационной емкости кода номера меток времени. Технический результат достигается за счет формирователя меток времени, который содержит выходную шину, первый генератор, первый счетчик...
Тип: Изобретение
Номер охранного документа: 0002665283
Дата охранного документа: 28.08.2018
29.08.2018
№218.016.8096

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники. Технический результат – повышение точности дифференциального измерительного преобразователя за счет введения блока коррекции, осуществляющего корректировку выходной характеристики преобразования. Дифференциальный измерительный...
Тип: Изобретение
Номер охранного документа: 0002665219
Дата охранного документа: 28.08.2018
Показаны записи 441-448 из 448.
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2e9e

Устройство для передачи светового излучения большой мощности

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим...
Тип: Изобретение
Номер охранного документа: 0002644448
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.342b

Способ иммобилизации жидких высокосолевых радиоактивных отходов

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения. Способ иммобилизации ЖРО в фосфатном компаунде включает регулирование уровня рН отходов, введение в полученный...
Тип: Изобретение
Номер охранного документа: 0002645737
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
11.06.2018
№218.016.6117

Способ поперечной накачки активной среды лазера

Изобретение относится к лазерной технике и может быть использовано для оптической поперечной накачки активной среды лазерной кюветы. Сущность изобретения: по сравнению с известным способом поперечной накачки активной среды лазера, включающим передачу излучения от диодных источников накачки с...
Тип: Изобретение
Номер охранного документа: 0002657125
Дата охранного документа: 08.06.2018
04.10.2018
№218.016.8e71

Оптическая система наведения

Оптическая система наведения может быть использована в астрономии и для систем лазерной локации космического мусора. Оптическая система наведения содержит платформу, имеющую возможность поворота вокруг вертикальной оси системы, с горизонтально установленным на этой платформе...
Тип: Изобретение
Номер охранного документа: 0002668647
Дата охранного документа: 02.10.2018
23.02.2020
№220.018.05ba

Способ поперечной накачки рабочей среды лазера

Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h,...
Тип: Изобретение
Номер охранного документа: 0002714781
Дата охранного документа: 19.02.2020
07.06.2020
№220.018.24c7

Система для циркуляции рабочей среды газового лазера

Изобретение относится к лазерной технике. Система для циркуляции рабочей среды газового лазера содержит лазерную камеру и два газовых контура с нагнетателями, проходящих через внутренний объем камеры с образованием каналов так, что внутри камеры первый канал отделен от второго канала стенками с...
Тип: Изобретение
Номер охранного документа: 0002722864
Дата охранного документа: 04.06.2020
+ добавить свой РИД