×
10.10.2014
216.012.fc54

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002530442
Дата охранного документа
10.10.2014
Аннотация: Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую, а также при разработки газочувствительных сенсоров. Технический результат: расширение функциональных возможностей материала за счет увеличение термо-ЭДС до 1,3 мВ/K при рабочей температуре 330 К и до 1,1 мВ/K при рабочей температуре 500 К. Сущность: способ заключается в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO размером не более 50 нм. После изготовления пленку из наночастиц SnO отжигают при температуре 330 ± 20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с. 1 з.п. ф-лы, 4 ил.

Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц или иначе наноматериала, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую. Также может быть использовано в различных областях науки и техники для разработки газочувствительных сенсоров.

За прототип выбран наноматериал на основе нанокристаллической полупроводниковой пленки SnO2, состоящий из частиц с типичным размером 10-100 нм [1]. Подобные материалы широко используются в качестве газочувствительных слоев сенсоров и могут быть получены различными методами напыления (например, термическое, магнетронное, ионно-лучевое) с последующим отжигом или золь-гель методом [1, 3]. Проводимость таких пленок сильно зависит от концентрации различных детектируемых газов. Известно, что важную роль в механизме чувствительности подобных сенсоров к различным детектируемым газам играет хемосорбция кислорода, т.к. детектируемые газы, как правило, активно взаимодействуют с хемосорбированным на поверхности полупроводниковых частиц кислородом [1-3]. При хемосорбции молекул кислорода, играющих роль акцептора, на поверхности полупроводниковой частицы с проводимостью n-типа образуются отрицательно заряженные ионы кислорода, а в приповерхностной области пространственного заряда образуется обедненный электронами заряженный слой и соответствующий изгиб энергетических зон вблизи поверхности [2]. Вследствие этого между отдельными частицами образуются потенциальные барьеры и проводимость такой системы можно приближенно описать следующим уравнением:

где Gv - множитель, описывающий объемную проводимость полупроводника, Vs - высота потенциального барьера. Повышение высоты потенциальных барьеров Vs между наночастицами при хемосорбции кислорода будет приводить к уменьшению проводимости. Если хемосорбция кислорода происходит в некоторой области температур, то при этих температурах величина Vs будет максимальна, и на температурной зависимости проводимости будет появляться минимум [2, 3]. Для термо-ЭДС S и коэффициента Пелтье П в полупроводнике известно следующее выражение (с точностью до несущественного здесь постоянного слагаемого) [4]:

или с учетом высоты потенциального барьера Vs:

где S - термоэдс, Е0 - разница энергий между дном зоны проводимости и уровнем Ферми при нулевой температуре, γ - коэффициент для температурной зависимости положения уровня Ферми, Vs - поверхностный потенциальный барьер между наночастицами. Таким образом, увеличение высоты потенциального барьера между полупроводниковыми наночастицами, обусловленное увеличением изгиба энергетических зон вблизи их поверхности, может приводить к усилению термоэлектрических свойств полупроводниковых наноматериалов. Известно, что эффективность термоэлектрических материалов определяется коэффициентом качества, равным произведению ZT. Здесь

где k - теплопроводность [Вт/(мК)], σ - электрическая проводимость, S - термо-ЭДС [В/К]. В настоящее время наилучшая величина коэффициента качества достигает ZT≈2 для некоторых термоэлектрических материалов, например, Bi2Te3, PbSe, но эти материалы имеют определенные недостатки - высокие рабочие температуры, содержат ядовитые, редкие или дорогостоящие элементы [5-7]. В качестве альтернативных перспективных термоэлектрических материалов в последнее время предложены оксиды металлов, как стабильные при высоких температурах, более экологически безопасные и дешевые. Например, предлагаются материалы на основе легированного ZnO (ZT=0,47 при 1000 K) и слоистого оксида кобальта Ca3Co4O9 (ZT=0,22 при 1000 K) [5, 8, 9]. В [10] предложен материал на основе смеси оксида олова SnO2 с добавками ZnO и Ta2O5 или Nb2O5. Порошкообразная смесь оксидов прессуется в таблетки, которые спекаются при температуре от 1000 до 1400°C. Общую формулу полученного материала можно записать в виде Sn1-x-yZnxMyO2, где 0,76≤1-x-y≤0,99, с включениями фазы ZnSn2O4 от 1 до 25% вес. Размер частиц полученного поликристаллического пористого материала лежит в диапазоне от 100 нм до 100 мкм, причем предпочтительный размер составляет от 5 до 70 микрометров. Недостатком данного материала является недостаточно высокие значения термо-ЭДС и коэффициента качества, которые составляют 100-200 мкВ/К и 0,06-0,13, соответственно, при 1000 К.

Техническим результатом предлагаемого изобретения является

• расширение функциональных возможностей термоэлектрических материалов за счет возможности изменения термо-ЭДС наноматериала в зависимости от концентрации кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе;

• упрощение и удешевление термоэлектрического материала за счет его изготовления из наночастиц SnO2 без применения специальных ядовитых, редких или дорогостоящих материалов типа свинца, серебра, висмута, теллура или редкоземельных элементов;

• увеличение термо-ЭДС до 1,3 мВ/К при рабочей температуре 330 К и до 1,1 мВ/К при рабочей температуре 500 К;

• увеличение коэффициента качества ZT термоэлектрического материала до 1 при рабочей температуре 330 или 500 К.

Для достижения указанного результата предложен способ получения

термоэлектрического газочувствительного материала, заключающийся в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO2 с размером не более 50 нм, при этом после изготовления пленку из наночастиц SnO2 отжигают при температуре 330±20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере, с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с.

При этом отжиг проводят в воздухе.

На фигуре 1 показана температурная зависимость термо-ЭДС предлагаемого материала.

На фигуре 2 приведена температурная зависимость коэффициента Пелтье, которая отражает температурную зависимость положения уровня Ферми согласно уравнению (2).

На фигуре 3 показана температурная зависимость проводимости предлагаемого материала.

На фигуре 4 приведена температурная зависимость коэффициента качества предлагаемого материала.

Измерения проводились на нанокристаллической пленке SnO2 толщиной 200 нм, полученной путем магнетронного напыления. Размеры отдельных наночастиц в полученной пленке, определенные на электронном микроскопе, составляли около 50 нм. Конструктивно экспериментальные образцы представляли собой поликоровую подложку с размерами 5×0,5×0,2 мм, с одной стороны которой находилась полупроводниковая пленка SnO2, а с другой - напыленная пленка платины, служащая нагревателем. Нагреватель являлся одновременно и термосопротивлением, по величине которого контролировалась температура образца. Температура образца могла изменяться и стабилизироваться на заданной величине с помощью специально разработанного электронного блока питания с точностью до 0,1°C. Для получения градиента температуры на образце платиновый нагреватель располагался только на одном конце образца. Разница температур измерялась с помощью двух термопар Au-Ni, размещенных на противоположных концах образца. Дифференциальная термо-ЭДС была измерена в диапазоне температур 300 - 550 К (Фиг.1). Соответствующий коэффициент Пелтье, который отражает температурную зависимость положения уровня Ферми согласно уравнению (2), приведен на Фиг.2. На Фиг.3 приведена температурная зависимость проводимости. На полученных зависимостях четко наблюдаются два экстремума при температурах около 330 и 500 К или, соответственно, 60 и 230°C. Эти экстремумы можно объяснить хемосорбцией заряженных форм кислорода O2- и O- при указанных температурах. Максимальная глубина залегания уровня Ферми в зависимости от температуры определяется изменением высоты потенциального барьера при хемосорбции кислорода и достигает значения около 0,55 эВ в области температуры 500 К (Фиг.2). Если после нагрева до такой температуры произвести быстрое охлаждение до комнатной температуры со скоростью не менее 10 К/с, повышенная величина потенциального барьера сохраняется, т.к. хемосорбированные молекулы кислорода остаются при этом на поверхности. Таким образом, термо-ЭДС металл оксидных полупроводниковых наноматериалов типа SnO2, ZnO, может быть существенно увеличена путем соответствующей температурной обработки материала. Оценка коэффициента качества ZT согласно уравнению (4) на основе измеренных термо-ЭДС (Фиг.1) и проводимости для предлагаемого наноматериала (Фиг.3) показывает, что его величина достигает значения 1 при двух оптимальных температурах 330 и 500 К (Фиг.4), что сравнимо с лучшими термоэлектрическими материалами. При этом величина коэффициента теплопроводности к для SnO2 полагалась равной 0,5 Вт/(м К) во всем диапазоне температур [11]. Из-за сильного рассеяния фононов на границах частиц, а также на различных дефектах и примесях теплопроводность поликристаллических пористых материалов может быть намного меньше, чем у монокристаллов, поэтому уменьшение размера наночастиц и толщины пленки может приводить к уменьшению теплопроводности [12]. Таким образом, существует возможность для дальнейшего уменьшения теплопроводности для предлагаемого наноматериала и увеличения коэффициента качества ZT. Также в предлагаемом наноматериале можно контролировать и настраивать величину потенциального барьера между наночастицами, чтобы оптимизировать транспортные свойства для получения максимального термоэлектрического эффекта.

Полученный наноматериал может быть использован в термоэлектрических генераторах, а также для изготовления различных газовых сенсоров с целью определения содержания кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе, причем на контактах газового сенсора генерируется ЭДС, которое зависит от концентрации детектируемого газа.

ЛИТЕРАТУРА

1. S. Song, J. Cho, W. Choi et al, Sensors and Actuators В 46 (1998) 42-19.

2. Моррисон С.Р. Химическая физика поверхности твердого тела. -М: Мир, 1980. С.296.

3. А.Е. Варфоломеев, А.В. Ерышкин, В.В. Малышев, А.С. Разумов, С.С. Якимов, -Журнал аналитической химии, том 52, №1 (1997) с.66-68.

4. В.Л. Бонч-Бруевич, С.Г. Калашников, Физика полупроводников, -М.: Наука, 1990.

5. MRS BULLETIN, vol.31, March 2006, p.193.

6. X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, H.L. Ni, J. Alloys Compd. 387 (2005) 282.

7. J. Seo, C. Lee, K. Park, J. Mater. Sci. 35 (2000) 1549

8. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79 (1996) 1816.

9. Y. Zhang and J. Zhang, J. Of Materials and Processing Technologie, 208 (2008) 70-74.

10. Патент ЕР 2447233 A1, Tin oxide-based thermoelectric materials, 2012.

11. P.R. Bueno, J.A. Varela et al, J. American Ceram. Soc., 88 (9) (2005) 2629-2631

12. C. Poulier, D. Smith, J. Absi, Journal of the European Ceramic Society 27 (2007) 475-478.


СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 81-90 из 260.
20.07.2015
№216.013.62fd

Электрохимический преобразователь энергии

Изобретение относится к автономным системам и установкам энергообеспечения, использующим различные виды топлива. Электрохимический преобразователь энергии содержит электроды, электрический соединитель и слой твердого электролита, выполненный из смеси оксидов металлов, включающих диоксид...
Тип: Изобретение
Номер охранного документа: 0002556888
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64ef

Способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ввэр-1000

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических...
Тип: Изобретение
Номер охранного документа: 0002557386
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64f7

Способ выращивания эпитаксиальных пленок монооксида европия на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, в частности тонких пленок на основе монооксида европия, и может быть использовано для создания устройств спинтроники, например спиновых транзисторов и инжекторов спин-поляризованного тока. Способ выращивания...
Тип: Изобретение
Номер охранного документа: 0002557394
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67c4

Комбинированный сверхпроводник

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении сверхпроводящих обмоток, сверхпроводящих накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц. Комбинированный сверхпроводник содержит провода 1,...
Тип: Изобретение
Номер охранного документа: 0002558117
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69df

Тепловыделяющая сборка стержневых твэлов (варианты) и способ ее работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР (PWR) и кипящих реакторах типа ВК (BWR). Предложена конструктивная схема ТВС со стержневыми твэлами, расположенными наклонно к вертикальной оси и образующими конусные и щелевые коллекторы для...
Тип: Изобретение
Номер охранного документа: 0002558656
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.744a

Способ генерации энергии в анаэробной системе

Изобретение относится преимущественно к области энергетики, в частности анаэробной энергетики, и может быть использовано в воздухонезависимых энергоустановках (ЭУ) с тепловыми двигателями и электрохимическими генераторами. Способ генерации энергии в анаэробной системе включает реакцию водорода...
Тип: Изобретение
Номер охранного документа: 0002561345
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.746b

Способ получения радионуклида никель-63

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ...
Тип: Изобретение
Номер охранного документа: 0002561378
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.84d2

Способ управления энергетической установкой

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения...
Тип: Изобретение
Номер охранного документа: 0002565605
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8579

Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002565772
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8fd1

Подводная ядерная термоэлектрическая установка

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно...
Тип: Изобретение
Номер охранного документа: 0002568433
Дата охранного документа: 20.11.2015
Показаны записи 81-90 из 151.
10.07.2015
№216.013.5ff7

Способ переработки облученного ядерного топлива

Изобретение относится к области радиохимической технологии, в частности к способам переработки облученного ядерного топлива с целью выделения и локализации газообразных изотопов криптона на головных операциях переработки облученного ядерного топлива, и может быть использовано в атомной...
Тип: Изобретение
Номер охранного документа: 0002556108
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62fd

Электрохимический преобразователь энергии

Изобретение относится к автономным системам и установкам энергообеспечения, использующим различные виды топлива. Электрохимический преобразователь энергии содержит электроды, электрический соединитель и слой твердого электролита, выполненный из смеси оксидов металлов, включающих диоксид...
Тип: Изобретение
Номер охранного документа: 0002556888
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64ef

Способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ввэр-1000

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических...
Тип: Изобретение
Номер охранного документа: 0002557386
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64f7

Способ выращивания эпитаксиальных пленок монооксида европия на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, в частности тонких пленок на основе монооксида европия, и может быть использовано для создания устройств спинтроники, например спиновых транзисторов и инжекторов спин-поляризованного тока. Способ выращивания...
Тип: Изобретение
Номер охранного документа: 0002557394
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67c4

Комбинированный сверхпроводник

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении сверхпроводящих обмоток, сверхпроводящих накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц. Комбинированный сверхпроводник содержит провода 1,...
Тип: Изобретение
Номер охранного документа: 0002558117
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69df

Тепловыделяющая сборка стержневых твэлов (варианты) и способ ее работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР (PWR) и кипящих реакторах типа ВК (BWR). Предложена конструктивная схема ТВС со стержневыми твэлами, расположенными наклонно к вертикальной оси и образующими конусные и щелевые коллекторы для...
Тип: Изобретение
Номер охранного документа: 0002558656
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.744a

Способ генерации энергии в анаэробной системе

Изобретение относится преимущественно к области энергетики, в частности анаэробной энергетики, и может быть использовано в воздухонезависимых энергоустановках (ЭУ) с тепловыми двигателями и электрохимическими генераторами. Способ генерации энергии в анаэробной системе включает реакцию водорода...
Тип: Изобретение
Номер охранного документа: 0002561345
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.746b

Способ получения радионуклида никель-63

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ...
Тип: Изобретение
Номер охранного документа: 0002561378
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.84d2

Способ управления энергетической установкой

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения...
Тип: Изобретение
Номер охранного документа: 0002565605
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8579

Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002565772
Дата охранного документа: 20.10.2015
+ добавить свой РИД