×
10.10.2014
216.012.fc54

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002530442
Дата охранного документа
10.10.2014
Аннотация: Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую, а также при разработки газочувствительных сенсоров. Технический результат: расширение функциональных возможностей материала за счет увеличение термо-ЭДС до 1,3 мВ/K при рабочей температуре 330 К и до 1,1 мВ/K при рабочей температуре 500 К. Сущность: способ заключается в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO размером не более 50 нм. После изготовления пленку из наночастиц SnO отжигают при температуре 330 ± 20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с. 1 з.п. ф-лы, 4 ил.

Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц или иначе наноматериала, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую. Также может быть использовано в различных областях науки и техники для разработки газочувствительных сенсоров.

За прототип выбран наноматериал на основе нанокристаллической полупроводниковой пленки SnO2, состоящий из частиц с типичным размером 10-100 нм [1]. Подобные материалы широко используются в качестве газочувствительных слоев сенсоров и могут быть получены различными методами напыления (например, термическое, магнетронное, ионно-лучевое) с последующим отжигом или золь-гель методом [1, 3]. Проводимость таких пленок сильно зависит от концентрации различных детектируемых газов. Известно, что важную роль в механизме чувствительности подобных сенсоров к различным детектируемым газам играет хемосорбция кислорода, т.к. детектируемые газы, как правило, активно взаимодействуют с хемосорбированным на поверхности полупроводниковых частиц кислородом [1-3]. При хемосорбции молекул кислорода, играющих роль акцептора, на поверхности полупроводниковой частицы с проводимостью n-типа образуются отрицательно заряженные ионы кислорода, а в приповерхностной области пространственного заряда образуется обедненный электронами заряженный слой и соответствующий изгиб энергетических зон вблизи поверхности [2]. Вследствие этого между отдельными частицами образуются потенциальные барьеры и проводимость такой системы можно приближенно описать следующим уравнением:

где Gv - множитель, описывающий объемную проводимость полупроводника, Vs - высота потенциального барьера. Повышение высоты потенциальных барьеров Vs между наночастицами при хемосорбции кислорода будет приводить к уменьшению проводимости. Если хемосорбция кислорода происходит в некоторой области температур, то при этих температурах величина Vs будет максимальна, и на температурной зависимости проводимости будет появляться минимум [2, 3]. Для термо-ЭДС S и коэффициента Пелтье П в полупроводнике известно следующее выражение (с точностью до несущественного здесь постоянного слагаемого) [4]:

или с учетом высоты потенциального барьера Vs:

где S - термоэдс, Е0 - разница энергий между дном зоны проводимости и уровнем Ферми при нулевой температуре, γ - коэффициент для температурной зависимости положения уровня Ферми, Vs - поверхностный потенциальный барьер между наночастицами. Таким образом, увеличение высоты потенциального барьера между полупроводниковыми наночастицами, обусловленное увеличением изгиба энергетических зон вблизи их поверхности, может приводить к усилению термоэлектрических свойств полупроводниковых наноматериалов. Известно, что эффективность термоэлектрических материалов определяется коэффициентом качества, равным произведению ZT. Здесь

где k - теплопроводность [Вт/(мК)], σ - электрическая проводимость, S - термо-ЭДС [В/К]. В настоящее время наилучшая величина коэффициента качества достигает ZT≈2 для некоторых термоэлектрических материалов, например, Bi2Te3, PbSe, но эти материалы имеют определенные недостатки - высокие рабочие температуры, содержат ядовитые, редкие или дорогостоящие элементы [5-7]. В качестве альтернативных перспективных термоэлектрических материалов в последнее время предложены оксиды металлов, как стабильные при высоких температурах, более экологически безопасные и дешевые. Например, предлагаются материалы на основе легированного ZnO (ZT=0,47 при 1000 K) и слоистого оксида кобальта Ca3Co4O9 (ZT=0,22 при 1000 K) [5, 8, 9]. В [10] предложен материал на основе смеси оксида олова SnO2 с добавками ZnO и Ta2O5 или Nb2O5. Порошкообразная смесь оксидов прессуется в таблетки, которые спекаются при температуре от 1000 до 1400°C. Общую формулу полученного материала можно записать в виде Sn1-x-yZnxMyO2, где 0,76≤1-x-y≤0,99, с включениями фазы ZnSn2O4 от 1 до 25% вес. Размер частиц полученного поликристаллического пористого материала лежит в диапазоне от 100 нм до 100 мкм, причем предпочтительный размер составляет от 5 до 70 микрометров. Недостатком данного материала является недостаточно высокие значения термо-ЭДС и коэффициента качества, которые составляют 100-200 мкВ/К и 0,06-0,13, соответственно, при 1000 К.

Техническим результатом предлагаемого изобретения является

• расширение функциональных возможностей термоэлектрических материалов за счет возможности изменения термо-ЭДС наноматериала в зависимости от концентрации кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе;

• упрощение и удешевление термоэлектрического материала за счет его изготовления из наночастиц SnO2 без применения специальных ядовитых, редких или дорогостоящих материалов типа свинца, серебра, висмута, теллура или редкоземельных элементов;

• увеличение термо-ЭДС до 1,3 мВ/К при рабочей температуре 330 К и до 1,1 мВ/К при рабочей температуре 500 К;

• увеличение коэффициента качества ZT термоэлектрического материала до 1 при рабочей температуре 330 или 500 К.

Для достижения указанного результата предложен способ получения

термоэлектрического газочувствительного материала, заключающийся в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO2 с размером не более 50 нм, при этом после изготовления пленку из наночастиц SnO2 отжигают при температуре 330±20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере, с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с.

При этом отжиг проводят в воздухе.

На фигуре 1 показана температурная зависимость термо-ЭДС предлагаемого материала.

На фигуре 2 приведена температурная зависимость коэффициента Пелтье, которая отражает температурную зависимость положения уровня Ферми согласно уравнению (2).

На фигуре 3 показана температурная зависимость проводимости предлагаемого материала.

На фигуре 4 приведена температурная зависимость коэффициента качества предлагаемого материала.

Измерения проводились на нанокристаллической пленке SnO2 толщиной 200 нм, полученной путем магнетронного напыления. Размеры отдельных наночастиц в полученной пленке, определенные на электронном микроскопе, составляли около 50 нм. Конструктивно экспериментальные образцы представляли собой поликоровую подложку с размерами 5×0,5×0,2 мм, с одной стороны которой находилась полупроводниковая пленка SnO2, а с другой - напыленная пленка платины, служащая нагревателем. Нагреватель являлся одновременно и термосопротивлением, по величине которого контролировалась температура образца. Температура образца могла изменяться и стабилизироваться на заданной величине с помощью специально разработанного электронного блока питания с точностью до 0,1°C. Для получения градиента температуры на образце платиновый нагреватель располагался только на одном конце образца. Разница температур измерялась с помощью двух термопар Au-Ni, размещенных на противоположных концах образца. Дифференциальная термо-ЭДС была измерена в диапазоне температур 300 - 550 К (Фиг.1). Соответствующий коэффициент Пелтье, который отражает температурную зависимость положения уровня Ферми согласно уравнению (2), приведен на Фиг.2. На Фиг.3 приведена температурная зависимость проводимости. На полученных зависимостях четко наблюдаются два экстремума при температурах около 330 и 500 К или, соответственно, 60 и 230°C. Эти экстремумы можно объяснить хемосорбцией заряженных форм кислорода O2- и O- при указанных температурах. Максимальная глубина залегания уровня Ферми в зависимости от температуры определяется изменением высоты потенциального барьера при хемосорбции кислорода и достигает значения около 0,55 эВ в области температуры 500 К (Фиг.2). Если после нагрева до такой температуры произвести быстрое охлаждение до комнатной температуры со скоростью не менее 10 К/с, повышенная величина потенциального барьера сохраняется, т.к. хемосорбированные молекулы кислорода остаются при этом на поверхности. Таким образом, термо-ЭДС металл оксидных полупроводниковых наноматериалов типа SnO2, ZnO, может быть существенно увеличена путем соответствующей температурной обработки материала. Оценка коэффициента качества ZT согласно уравнению (4) на основе измеренных термо-ЭДС (Фиг.1) и проводимости для предлагаемого наноматериала (Фиг.3) показывает, что его величина достигает значения 1 при двух оптимальных температурах 330 и 500 К (Фиг.4), что сравнимо с лучшими термоэлектрическими материалами. При этом величина коэффициента теплопроводности к для SnO2 полагалась равной 0,5 Вт/(м К) во всем диапазоне температур [11]. Из-за сильного рассеяния фононов на границах частиц, а также на различных дефектах и примесях теплопроводность поликристаллических пористых материалов может быть намного меньше, чем у монокристаллов, поэтому уменьшение размера наночастиц и толщины пленки может приводить к уменьшению теплопроводности [12]. Таким образом, существует возможность для дальнейшего уменьшения теплопроводности для предлагаемого наноматериала и увеличения коэффициента качества ZT. Также в предлагаемом наноматериале можно контролировать и настраивать величину потенциального барьера между наночастицами, чтобы оптимизировать транспортные свойства для получения максимального термоэлектрического эффекта.

Полученный наноматериал может быть использован в термоэлектрических генераторах, а также для изготовления различных газовых сенсоров с целью определения содержания кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе, причем на контактах газового сенсора генерируется ЭДС, которое зависит от концентрации детектируемого газа.

ЛИТЕРАТУРА

1. S. Song, J. Cho, W. Choi et al, Sensors and Actuators В 46 (1998) 42-19.

2. Моррисон С.Р. Химическая физика поверхности твердого тела. -М: Мир, 1980. С.296.

3. А.Е. Варфоломеев, А.В. Ерышкин, В.В. Малышев, А.С. Разумов, С.С. Якимов, -Журнал аналитической химии, том 52, №1 (1997) с.66-68.

4. В.Л. Бонч-Бруевич, С.Г. Калашников, Физика полупроводников, -М.: Наука, 1990.

5. MRS BULLETIN, vol.31, March 2006, p.193.

6. X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, H.L. Ni, J. Alloys Compd. 387 (2005) 282.

7. J. Seo, C. Lee, K. Park, J. Mater. Sci. 35 (2000) 1549

8. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79 (1996) 1816.

9. Y. Zhang and J. Zhang, J. Of Materials and Processing Technologie, 208 (2008) 70-74.

10. Патент ЕР 2447233 A1, Tin oxide-based thermoelectric materials, 2012.

11. P.R. Bueno, J.A. Varela et al, J. American Ceram. Soc., 88 (9) (2005) 2629-2631

12. C. Poulier, D. Smith, J. Absi, Journal of the European Ceramic Society 27 (2007) 475-478.


СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 211-220 из 260.
09.06.2019
№219.017.7ec9

Способ получения нанодисперсных металлов в жидкой фазе

Изобретение относится к способу получения нанодисперсных металлов в жидкой фазе (воде, органических растворителях). Способ включает пропускание переменного электрического тока между электродами, погруженными в жидкую фазу, и частицами диспергируемого металла, введенными в межэлектродное...
Тип: Изобретение
Номер охранного документа: 0002437741
Дата охранного документа: 27.12.2011
09.06.2019
№219.017.7ef1

Устройство для получения нанодисперсных металлов в жидкой фазе

Изобретение относится к устройству для получения нанодисперсных металлов в жидкой фазе (воде, органических растворителях). Устройство содержит корпус с патрубками для подвода и отвода жидкой фазы с частицами диспергируемого металла и расположенными в корпусе и подключенными к источнику тока...
Тип: Изобретение
Номер охранного документа: 0002430999
Дата охранного документа: 10.10.2011
09.06.2019
№219.017.7f54

Способ определения эффективного коэффициента размножения ядерной установки

Изобретение относится к физике ядерных реакторов и может быть использовано для экспериментально-расчетного определения эффективного коэффициента размножения (k) активных зон ядерных установок (ЯУ). Измеряют поток нейтронов n(t) в ЯУ как сигнал детектора нейтронов v(t) с интервалом дискретности...
Тип: Изобретение
Номер охранного документа: 0002442234
Дата охранного документа: 10.02.2012
14.06.2019
№219.017.8311

Зарядная станция для электрического транспорта

Изобретение относится к области электротехники, в частности к системам зарядки гибридного и/или электрического транспорта. Техническим результатом является возможность зарядить несколько электрических легковых и грузовых автомобилей, а также автобусов/электробусов, без подключения к воздушным...
Тип: Изобретение
Номер охранного документа: 0002691386
Дата охранного документа: 13.06.2019
10.07.2019
№219.017.af7a

Способ установки первичного преобразователя шарикового расходомера

Изобретение предназначено для использования при измерении расхода воды в топливных каналах реактора большой мощности (РБМК) штатным прибором - шариковым расходомером. Первичный преобразователь расходомера, включающий в себя корпус (4) магнитоиндукционного преобразователя, втулку (12) с камерой...
Тип: Изобретение
Номер охранного документа: 0002422775
Дата охранного документа: 27.06.2011
10.07.2019
№219.017.b082

Способ получения радионуклида висмут-212

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. Описан способ получения радионуклида висмут-212 из азотнокислого раствора, содержащего смесь радионуклидов торий-228, торий-229 и их дочерних продуктов распада, и...
Тип: Изобретение
Номер охранного документа: 0002439727
Дата охранного документа: 10.01.2012
12.07.2019
№219.017.b311

Противовоспалительный препарат на основе кетопрофена и способ его получения

Изобретение относится к области фармакологии, а именно к составу и способу получения противовоспалительного препарата на основе кетопрофена в виде лиофилизата для приготовления суспензии частиц с размером от 200 до 300 нм. Противовоспалительный препарат содержит, масс. %: активный компонент -...
Тип: Изобретение
Номер охранного документа: 0002694221
Дата охранного документа: 10.07.2019
19.07.2019
№219.017.b665

Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока

Использование: для создания функциональных переключаемых электронных устройств. Сущность изобретения заключается в том, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока, включает...
Тип: Изобретение
Номер охранного документа: 0002694800
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b692

Способ изготовления термобатареи

Изобретение относится к области термоэлектрического преобразования тепловой энергии в электрическую и может быть применено для изготовления полупроводниковых термоэлементов и термоэлектрических батарей из них, используемых в конструкциях термоэлектрических генераторов. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002694797
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное...
Тип: Изобретение
Номер охранного документа: 0002694799
Дата охранного документа: 16.07.2019
Показаны записи 151-151 из 151.
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
+ добавить свой РИД