×
10.10.2014
216.012.fc4b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ НАНОЧАСТИЦ ЖЕЛЕЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии, в частности к способу получения модифицированных наночастиц железа, которые могут быть использованы при создании магнитоуправляемых материалов. Проводят обработку наночастиц железа в среде органического растворителя в диапазоне температур 20-60°С с использованием соединения фторорганического полисульфида со следующей структурной формулой: R-(S)-R, где R: CF, n=1-10, m=2-3(A), ClCFCH-, m=2-3 (Б) или CFOCFClCF-, m=2-3 (В). Обеспечивается получение модифицированных наночастиц железа, не склонных к агломерации, устойчивых к окислению кислородом воздуха, стойких в концентрированной соляной кислоте, обладающих седиментационной устойчивостью и которые могут быть использованы для введения в поли- и перфторированные полимерные матрицы. 2 з.п. ф-лы, 2 табл., 5 пр.

Предлагаемое изобретение относится к области нанотехнологии, в частности к способу получения модифицированных наночастиц железа, которые могут быть использованы в создании магнитоуправляемых материалов/магнитореологических жидкостей (магнитожидкостные уплотнения, амортизаторы), радиопоглощающих покрытий, уменьшающих радиолокационную заметность (УРЗ) объектов и других полимерных композиционных материалов на основе фторполимеров, обладающих такими преимуществами, как выдающаяся термо- и агрессивостойкость, масло- и бензостойкость, а также высокая гидрофобность и олеофобность.

Известен способ получения модифицированных наночастиц металлов, в том числе железа, защищенных от окисления поверхностно-активным веществом катионного типа с противоионами галогенов [Пат. РФ 2455120, опубл. 10.07.2012, B22F 9/24]. Однако данная модификация наночастиц металлов обеспечивает лишь защиту частиц от окисления кислородом воздуха, не защищая от влияния других агрессивных сред и агломерации. Кроме того, низкая седиментационная устойчивость дисперсных систем на основе данных модифицированных паночастиц металлов не позволяет вводить их в полимерные матрицы.

Известен способ адсорбционной модификации карбонильного железа раствором гексадекантиола в этаноле в бескислородных условиях [Lee D.-W., Yu J.-H., Jang Т., Kim B.-K. // J. Mater. Sci. Technol, 2010. V.26. P.706]. В данном случае сорбционный характер связи молекул реагента-модификатора с поверхностью наночастиц железа придает стойкость к атмосферной коррозии, однако, не обеспечивает удовлетворительной устойчивости к агрессивным средам. Кроме того, высокая склонность к агломерации значительно снижает область применения модифицированных таким способом наночастиц железа.

Наиболее близким аналогом по технической сущности и достигаемому результату является способ получения модифицированных наночастиц железа (НЧЖ), который заключается в разложении паров пентакарбонила железа в токе инертного газа с образованием высокодисперсных НЧЖ, которые в газовой фазе подвергаются обработке бис-(3,7-окса-перфтороктил)дисульфидом [Rodin V.M., Emelianov G.A., Vasileva E.S., Voznyakovskii A.P., Kim D. - Soo. // Fullerenes, Nanotubes and Carbon Nanostructures, 2008. V.16. P.706]. Получаемые таким способом модифицированные НЧЖ обладают высокой стойкостью к окислению, седиментационной устойчивостью, пониженной склонностью к агломерации, что способствует введению их в поли- и перфторированные полимерные матрицы. Однако данный способ имеет ряд серьезных недостатков: процесс проводят в газовой фазе, требующей жестких высокотемпературных условий и сложного аппаратурного оформления. Опытная установка включает в себя два испарителя с нагревателями для исходных компонентов, газопроводную систему, проточный вертикальный реактор трубчатого типа с двумя зонами нагрева (200-350°C), а также конденсационную камеру с охлаждающей системой. Кроме того, используемый фторорганический дисульфид - бис-(3,7-окса-перфтороктил)дисульфид, является труднодоступным соединением, а способ имеет низкую производительность (0,5 г в сутки модифицированных НЧЖ). Вышеуказанные недостатки не позволяют использовать его не только для серийного производства, но даже для расширенного лабораторного. Следует также отметить невысокую стойкость в концентрированной соляной кислоте модифицированных таким образом НЧЖ, потери по массе составляют до 40% (масс.).

Технической задачей данного изобретения является разработка упрощенного способа получения высокодисперсных модифицированных НЧЖ, обладающих стойкостью к окислению, седиментационной устойчивостью, низкой склонностью к агломерации, а также стойкостью в концентрированной соляной кислоте.

Поставленная задача достигается тем, что обработку НЧЖ фторорганическим полисульфидом проводят в среде органического растворителя при температурах 20-60°C с использованием в качестве фторорганического полисульфида соединений общей формулы:

где Rf:

Сущность изобретения заключается в смешении в стандартном реакторе, снабженном перемешивающим устройством, полидисперсных порошков НЧЖ с фторорганическими полисульфидами (I) в среде органического растворителя при умеренных температурах (20-60°C).

В качестве исходных порошков для получения НЧЖ могут быть использованы порошки следующих марок, выпускаемые в промышленном масштабе: карбонильное радиотехническое Р-10 (ГОСТ 13610-79), карбонильное Пс (ГОСТ 13610-79), карбонильное техническое ЖКВ (ТУ 6-050210316-007-88).

При модификации могут быть использованы фторорганические полисульфиды следующих структурных формул:

Оказалось, что количество фторорганического полисульфида, необходимого для обработки порошков железа, в диапазоне температур 20-60°C может составлять всего от 2 до 10 м.ч. на 100 м.ч. железа.

В качестве органического растворителя могут быть использованы: трет-бутилметиловый эфир, четыреххлористый углерод, диметилформамид, диглим, гексан, метилфениловый эфир, этилфениловый эфир, этилацетат, бутилацетат, хладон 113, хладон 114B2, перфторметилдекалип, перфторметилциклогексан.

Способ модификации осуществляется смешением в металлическом реакторе в диапазоне температур 20-60°C в течение 3-5 часов порошка железа и фторорганического полисульфида в среде растворителя. Наиболее предпочтителен температурный диапазон 25-50°C. Далее осуществляется вакуумная отгонка растворителя и сушка модифицированных НЧЖ, которые затем хранятся в пластиковой таре.

Получаемые таким способом НЧЖ исследуют па стойкость к окислению кислородом и другими агрессивными компонентами воздуха методом термогравиметрического анализа; на склонность к снижению агломерации во времени методом динамического светорассеяния; на седиментационную устойчивость после обработки ультразвуком в поли- и перфторированных полимерных матрицах; на стойкость в концентрированной соляной кислоте при нагревании от 20 до 45°C в течение суток.

Полученный сухой модифицированный порошок НЧЖ переносится и хранится в заранее подготовленной, продутой аргоном пластиковой таре.

Пример 1

В реактор из нержавеющей стали объемом 0,2 л, снабженный мешалкой, двумя вентилями, манометром, карманом для термопары, загружают в токе аргона 100 г НЧЖ марки Р-10 (средний диаметр частиц 3,5 мкм), вакуумируют и охлаждают до -45°C охлаждающей смесью этанол - азот. Далее в реактор подают 130 мл этилацетата и 0,7 г полисульфида (Б, где m=2). Смесь доводят до 25°C и выдерживают в течение 5 ч. Далее в токе аргона реакционную смесь выгружают из реактора и переносят ее в круглодонную колбу и осуществляют вакуумную отгонку растворителя и избыточного полисульфида. Затем производят сушку модифицированного НЧЖ при 5 мм рт.ст. и 150°C в течение 2 часов. В результате опыта получено 98 г модифицированного НЧЖ.

Полученный сухой модифицированный порошок НЧЖ переносится и хранится в заранее подготовленной, продутой аргоном пластиковой таре.

Пример 2

В реактор из нержавеющей стали объемом 0,2 л, снабженный мешалкой, двумя вентилями, манометром, карманом для термопары, загружают в токе аргона 130 г НЧЖ марки Пс (средний диаметр частиц 2,2 мкм), вакуумируют и охлаждают до -40°C охлаждающей смесью этанол - азот. Далее в реактор подают 120 мл хладона 113 и 1,7 г полисульфида (В, где m=3). Смесь доводят до 50°C и выдерживают в течение 4 ч. Далее в токе аргона реакционную смесь выгружают из реактора и переносят ее в круглодонную колбу, осуществляют вакуумную отгонку растворителя и избыточного полисульфида. Затем производят сушку модифицированного НЧЖ при 10 мм рт.ст. и 160°C в течение 2 часов. В результате опыта получено 128 г модифицированного НЧЖ.

Полученный сухой модифицированный порошок НЧЖ переносится и хранится в заранее подготовленной, продутой аргоном пластиковой таре.

Пример 3

В реактор из нержавеющей стали объемом 0,2 л, снабженный мешалкой, двумя вентилями, манометром, карманом для термопары, загружают в токе аргона 120 г НЧЖ марки ЖКВ (средний диаметр частиц 3 мкм), вакуумируют и охлаждают до -50°C охлаждающей смесью этанол - азот. Далее в реактор подают 150 мл этилфенилового эфира и 1,3 г полисульфида (А, где n=1, m=3). Нагревают до 50°C и выдерживают при данной температуре 3 часа. Далее в токе аргона реакционную смесь выгружают из реактора и переносят ее в круглодонную колбу, осуществляют вакуумную отгонку растворителя и избыточного полисульфида. Затем производят сушку модифицированного НЧЖ при 5-7 мм рт.ст. и 150°C в течение 2 часов. В результате опыта получено 118 г модифицированного НЧЖ.

Полученный сухой модифицированный порошок НЧЖ переносится и хранится в заранее подготовленной, продутой аргоном пластиковой таре.

Пример 4

В реактор из нержавеющей стали объемом 0,2 л, снабженный мешалкой, двумя вентилями, манометром, карманом для термопары, загружают в токе аргона 130 г НЧЖ марки ЖКВ (средний диаметр частиц 3 мкм), вакуумируют и охлаждают до -45°C охлаждающей смесью этанол - азот. Далее в реактор подают 140 мл метилфенилового эфира и 2,3 г полисульфида (А, где n=6, m=2). Нагревают до 40°C и термостатируют при данной температуре 4 часа. Далее в токе аргона реакционную смесь выгружают из реактора и переносят ее в круглодонную колбу, осуществляют вакуумную отгонку растворителя и избыточного полисульфида. Затем производят сушку модифицированного НЧЖ при 7 мм рт.ст. и 155°C в течение 2 часов. В результате опыта получено 131 г модифицированного НЧЖ.

Полученный сухой модифицированный порошок НЧЖ переносится и хранится в заранее подготовленной, продутой аргоном пластиковой таре.

Пример 5

В реактор из нержавеющей стали объемом 0,2 л, снабженный мешалкой, двумя вентилями, манометром, карманом для термопары, загружают в токе аргона 105 г НЧЖ марки Р-10 (средний диаметр частиц 3,5 мкм), вакуумируют и охлаждают до -45°C охлаждающей смесью этанол - азот. Далее в реактор подают 130 мл бутилацетата и 3 г полисульфида (А, где n=10, m=3). Нагревают до 25°C и выдерживают при данной температуре 5 часов. Далее в токе аргона реакционную смесь выгружают из реактора и переносят ее в круглодонную колбу, осуществляют вакуумную отгонку растворителя и избыточного полисульфида. Затем производят сушку модифицированного НЧЖ при 10 мм рт.ст. и 160°C в течение 2 часов. В результате опыта получено 106 г модифицированного НЧЖ.

Полученный сухой модифицированный порошок НЧЖ переносится и хранится в заранее подготовленной продутой аргоном пластиковой таре.

Исследования распределения размера исходных и модифицированных образцов НЧЖ проводились методом динамического светорассеяния на анализаторе ZetasizerNano. Данные распределения размера частиц по объему (пример 1-5) приведены в таблице 1.

Условия съемки: гидрированная кремнийорганическая жидкость (ГКЖ) - η=1,28 Пз, ε=2,55; навеска образцов железа 0,1% (масс.) от ГКЖ, n=1,425; ультразвуковая обработка в течение 2 минут.

Таблица 1
Пример № Исходные НЧЖ Модифицированные НЧЖ
Макс.1, нм Макс.2, нм Макс.3, нм Макс.1, нм Макс.2, нм
1 3380 (85%) 1440 (6%) 790 (8%) 1150 (52%) 430 (46%)
2 2270 (89%) 1270(5%) 840 (4%) 950 (55%) 470 (42%)
3 2860 (88%) 1720(7%) 980 (4%) 1280 (57%) 520 (41%)
4 2940 (84%) 1710(10%) 920 (5%) 1070 (61%) 510 (38%)
5 3440 (87%) 1450 (6%) 780 (6%) 1110 (54%) 500 (44%)

В таблице 2 приведены данные по стойкости исходных и модифицированных НЧЖ (пример 1-5) в концентрированной соляной кислоте при температуре 35°C в течение суток и выражены в массовых процентах потерь по массе.

Таблица 2
Пример № Исходные НЧЖ Модифицированные НЧЖ
Потери по массе, % (масс.) Потери по массе, % (масс.)
1 99 3
2 99 3
3 100 5
4 100 4
5 99 2

Как видно из данных, приведенных в таблицах, размер частиц после модификации значительно снижается, что свидетельствует об отсутствии агломерации модифицированных НЧЖ, при этом дисперсность не меняется при хранении.

Следует отметить также, что обнаруженный эффект повышенной стойкости модифицированных НЧЖ в концентрированной соляной кислоте является неожиданным, т.к. при проведении процесса модификации НЧЖ с использованием вышеуказанных фторорганических полисульфидов в среде органического растворителя при температурах более 100°C стойкость в концентрированной соляной кислоте модифицированных НЧЖ была значительно ниже и потери по массе составляли 25-35% (масс.).

Полученные в примерах (1-5) модифицированные НЧЖ были использованы в качестве наполнителя дисперсий для создания магнито-реологических жидкостей. Приготовление дисперсии на основе модифицированных НЧЖ и поли- или перфторированной полимерной матрицы (например, фторсилоксанов или фторуглеродов) сводилось к замешиванию компонентов в низкооборотном диспергаторе и обработке ультразвуком. После чего на протяжении нескольких месяцев наблюдалась однородная дисперсия, которая не расслаивается и не теряет своих высоких магнито-реологических свойств, что подтверждает седиментационную устойчивость модифицированных НЧЖ в поли- или перфторированных полимерных матрицах.

Таким образом, как видно из приведенных примеров, предлагаемый способ технически прост, не требует специального оборудования, проведение процесса при невысоких температурах исключает возможность окисления частиц на воздухе и дальнейшей агломерации, обладает высокой производительностью, при этом получаемые модифицированные НЧЖ являются высокодисперсными и не склонны к агломерации, устойчивы к окислению кислородом воздуха, стойки в концентрированной соляной кислоте, обладают седиментационной устойчивостью и могут быть использованы для введения в поли- и перфторированные полимерные матрицы.


СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ НАНОЧАСТИЦ ЖЕЛЕЗА
Источник поступления информации: Роспатент

Показаны записи 31-39 из 39.
10.04.2019
№219.017.084b

Низкомолекулярные тройные сополимеры винилиденфторида и мономера, содержащего фторсульфатную группу

Изобретение имеет отношение к низкомолекулярным тройным сополимерам винилиденфторида и мономера, содержащего фторсульфатную группу, общей формулы: где R=-CFOSOF, -CFO(CF)OSOF; l=29-66; m=9-18; n=2,4-4 со среднечисленной молекулярной массой 3000-9000. Технический результат - получение...
Тип: Изобретение
Номер охранного документа: 0002432366
Дата охранного документа: 27.10.2011
19.04.2019
№219.017.31f4

Полиметилалкил{метил(фенэтил)}силоксаны для термо-, морозостойких материалов

Изобретение относится к новым кремнийорганическим соединениям для применения в термо- и морозостойких материалах. Предложены полиметилалкилметил(фенэтил)силоксаны общей формулы где R=-СН или -СН=СН, m=8-99,97, n=0,03-92, m+n=100, х=1-100. Предложенные соединения получают гидролитической...
Тип: Изобретение
Номер охранного документа: 0002458942
Дата охранного документа: 20.08.2012
19.04.2019
№219.017.3411

Полиметил(фенэтил)силоксаны для термостойких материалов

Изобретение относится к полисилоксанам, которые могут быть использованы в качестве термостойких материалов в различных отраслях промышленности. Предложены полиметил(фенэтил)силоксаны общей формулы (I), где n=100÷10000. Указанные соединения получают гидролитической поликонденсацией...
Тип: Изобретение
Номер охранного документа: 0002462484
Дата охранного документа: 27.09.2012
09.05.2019
№219.017.4d59

Композиция для нейтронной защиты

Изобретение может быть использовано в качестве защитного слоя в транспортно-упаковочных конструкциях для транспортировки или хранения отработанного ядерного топлива. Разработана композиция для нейтронной защиты, обладающая хорошей термостабильностью и текучестью при нормальных условиях....
Тип: Изобретение
Номер охранного документа: 0002373587
Дата охранного документа: 20.11.2009
09.05.2019
№219.017.4eba

Способ получения хлорированных полидиенов

Изобретение имеет отношение к способу получения хлорированных полидиенов, используемых в промышленности синтетических каучуков. Способ заключается во взаимодействии полидиенов с хлороформом в присутствии катализатора межфазного переноса и водного раствора гидроксида щелочного металла при его...
Тип: Изобретение
Номер охранного документа: 0002429247
Дата охранного документа: 20.09.2011
09.05.2019
№219.017.4fc7

Способ получения полифенилсилсесквиоксанполидиорганосилоксанового блоксополимера

Изобретение относится к способам получения кремнийорганических блоксополимеров, содержащих фенилсилсесквиоксановые и диорганосилоксановые блоки. Предложенный способ заключается в проведении гетерофункциональной поликонденсации полифенилсилсесквиоксана и полидиорганосилоксана формулы (I), где...
Тип: Изобретение
Номер охранного документа: 0002439092
Дата охранного документа: 10.01.2012
18.05.2019
№219.017.5a67

Способ получения полифтораллиловых эфиров

Настоящее изобретение относится к способу получения полифтораллиловых эфиров, содержащих атомы галогена, отличные от фтора - ценных мономеров для синтеза разнообразных сополимеров, используемых в качестве уплотнительных материалов в различных областях техники, например, в авиационной технике,...
Тип: Изобретение
Номер охранного документа: 0002406718
Дата охранного документа: 20.12.2010
09.06.2019
№219.017.7d44

Способ получения модифицированных полидиенов, содержащих дихлорциклопропановые группы

Изобретение имеет отношение к способу получения модифицированных полидиенов. Способ заключается во взаимодействии полидиенов в присутствии катализатора с хлороформом и окисью олефина. Взаимодействие осуществляют в растворе полидиена в хлороформе, в качестве катализатора используют хлористый...
Тип: Изобретение
Номер охранного документа: 0002429248
Дата охранного документа: 20.09.2011
19.06.2019
№219.017.8a71

Способ получения катализатора (со)полимеризации бутадиена

Изобретение может быть использовано в промышленности синтетических каучуков при производстве цис-1,4 полидиенов. Описан способ получения катализатора (со)полимеризации бутадиена взаимодействием компонентов, включающих триизобутилалюминий, сопряженный диен и соединение редкоземельного элемента,...
Тип: Изобретение
Номер охранного документа: 0002432365
Дата охранного документа: 27.10.2011
Показаны записи 31-35 из 35.
08.04.2019
№219.016.fec2

Способ получения катализатора сополимеризации бутадиена с изопреном

Изобретение относится к способам получения катализатора сополимеризации бутадиена с изопреном и может найти применение при производстве каучуков общего назначения в промышленности синтетических каучуков. Предложен способ получения катализатора сополимеризации бутадиена с изопреном...
Тип: Изобретение
Номер охранного документа: 0002684279
Дата охранного документа: 05.04.2019
10.04.2019
№219.017.084b

Низкомолекулярные тройные сополимеры винилиденфторида и мономера, содержащего фторсульфатную группу

Изобретение имеет отношение к низкомолекулярным тройным сополимерам винилиденфторида и мономера, содержащего фторсульфатную группу, общей формулы: где R=-CFOSOF, -CFO(CF)OSOF; l=29-66; m=9-18; n=2,4-4 со среднечисленной молекулярной массой 3000-9000. Технический результат - получение...
Тип: Изобретение
Номер охранного документа: 0002432366
Дата охранного документа: 27.10.2011
10.04.2019
№219.017.0913

Состав эмульсионного взрывчатого вещества

Изобретение относится к области взрывных работ в горной промышленности на земной поверхности с ручным и механизированным заряжанием скважин любой степени обводненности, а именно взрывчатым веществам по крепким, средним, слабым породам и углю. Состав эмульсионного взрывчатого вещества содержит...
Тип: Изобретение
Номер охранного документа: 0002446134
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.9992

Состав литого взрывчатого вещества (варианты)

Изобретение относится к взрывным работам, а именно к составам литых взрывчатых веществ, используемых при производстве шашек-детонаторов, которые применяются для ведения взрывных работ в горной промышленности. Состав литого взрывчатого вещества (вариант 1) содержит гексоген или...
Тип: Изобретение
Номер охранного документа: 0002270181
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.b08c

Штамм "ставрополь 01/08" вируса африканской чумы свиней для вирусологических, молекулярно-генетических и мониторинговых исследований

Изобретение относится к области ветеринарной вирусологии. Штамм выделен от свиньи, павшей в ТОО «Горькая Балка» Советского района Ставропольского края во время эпизоотии болезни в 2008 г. Штамм является новым, ранее неизвестным, выделенным на территории РФ и обозначен как штамм «Ставрополь...
Тип: Изобретение
Номер охранного документа: 0002439152
Дата охранного документа: 10.01.2012
+ добавить свой РИД