×
10.10.2014
216.012.fbba

Результат интеллектуальной деятельности: УСТРОЙСТВО ПОДПОВЕРХНОСТНОГО ЗОНДИРОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники, преимущественно к радиолокации объектов, и может быть использовано для определения длины линейного контрастного по электромагнитным характеристикам относительно вмещающего пространства подповерхностного объекта. Технический результат заключается в возможности определения длины линейного контрастного по электромагнитным характеристикам относительно вмещающего пространства подповерхностного объекта. Устройство подповерхностного зондирования содержит приемо-передающую антенну, антенный коммутатор, передатчик, малошумящий усилитель, детектор, индикаторный блок, синхронизатор, два квадратора, два блока извлечения квадратного корня, два перемножителя, сумматор, делитель на два, цифровой измеритель длительности интервала времени и блок ввода данных, два триггера Шмитта, пять схем совпадений, четыре инвертора, три D-триггера, JK-триггер, схему логического сложения, делитель на четыре и счетчик. 3 ил.
Основные результаты: Устройство подповерхностного зондирования, включающее приемо-передающую антенну, антенный коммутатор, передатчик, малошумящий усилитель, детектор, индикаторный блок, синхронизатор, первый и второй квадраторы, первый блок извлечения квадратного корня, первый и второй перемножители, сумматор, делитель на два, цифровой измеритель длительности интервала времени и блок ввода данных, отличающееся тем, что дополнительно содержит два триггера Шмитта, пять схем совпадений, четыре инвертора, три D-триггера, второй блок извлечения квадратного корня, JK-триггер, схему логического сложения, делитель на четыре и счетчик, причем к выходу синхронизатора подключены последовательно соединенные передатчик, антенный коммутатор с подключенной к нему приемо-передающей антенной, малошумящий усилитель, детектор, первый квадратор, первый блок извлечения квадратного корня, первый триггер Шмитта, первый и второй D-триггеры, первый инвертор, первая схема совпадений, схема логического сложения, второй инвертор, третий D-триггер, вторая и третья схемы совпадений, JK-триггер, четвертая схема совпадений, счетчик, первый перемножитель, второй квадратор, делитель на четыре, сумматор, второй блок извлечения квадратного корня и индикаторный блок, между выходом передатчика и вторым входом сумматора последовательно включены второй триггер Шмитта, цифровой измеритель длительности интервала времени, делитель на два и второй перемножитель, второй вход которого соединен с выходом первого премножителя, а его третий вход соединен с блоком ввода данных и вторым входом первого перемножителя, второй вход JK-триггера соединен с выходом пятой схемы совпадений, первый вход которой соединен с выходом второй схемы совпадений, а ее второй вход подключен к выходу JK-триггера и входу третьего инвертора, который выходом соединен со вторым входом третьей схемы совпадений, между выходом и вторым входом третьего D-триггера включен четвертый инвертор, выход синхронизатора также соединен с третьим входом JK-триггера и со вторыми входами первого и второго D-триггеров, четвертой схемы совпадений и цифрового измерителя длительности интервала времени, чей третий вход соединен с выходом первого триггера Шмитта, второй вход первой схемы совпадений соединен с выходом первого D-триггера, второй вход второй схемы совпадений соединен с выходом первой схемы совпадений, а второй вход схемы логического сложения соединен с выходом второго триггера Шмитта.

Изобретение относится к радиотехнике, преимущественно к радиолокации объектов, и может быть использовано для определения длины линейного контрастного по электромагнитным характеристикам относительно вмещающего пространства подповерхностного объекта.

Известен «Радар подповерхностного зондирования», содержащий антенну, соединенную с антенным переключателем, который соединен с выходом передатчика и входом высокочастотного блока приемника, соединенными через усилитель промежуточной частоты с преобразователем координат, на выходе которого включен дисплей; блок селекции дальности с n-входами, каждый из n-входов которого соединен с выходом усилителя промежуточной частоты и с одним из входов n-перемножителей, другой вход каждого из которых соединен с выходом генератора строб-импульсов, при этом каждый из n-выходов блока селекции дальности через вход блока доплеровской фильтрации соединен с одним из m доплеровских фильтров, выход каждого из которых соединен со своим детектором-интегратором, выходы которых соединены с преобразователем координат (Свидетельство на полезную модель РФ №22826, опубл. 27.04.2002).

Недостатком известного радара является отображение на дисплее лишь координат подповерхностной цели и невозможность его использования для определения длины линейного контрастного подповерхностного объекта, поскольку обработка принимаемого сигнала данным радаром не позволяет извлечь информацию о длине предмета.

Известно устройство подповерхностного радиолокационного зондирования, содержащее первый и второй задающий генераторы, усилитель мощности, передающую и приемную антенны, приемник прямого усиления, смеситель, узкополосный низкочастотный фильтр, накопитель, пороговый анализатор уровня, блок управления, вычислитель и блок индикации, соединенные определенным образом (Патент РФ №2303279, опубл. 20.07.2007).

Недостатком устройства является невозможность его использования для определения длины линейного контрастного подповерхностного объекта при зондировании исследуемого пространства в силу того, что данное устройство основано на зондировании пространства радиоимпульсами и разбиении интервала приема на К временных интервалов, в каждом из которых осуществляется прием с накоплением сигналов, в результате чего возможно лишь определение глубины залегания высокопроводящих пластов земной коры.

Наиболее близким к предлагаемому техническому решению является устройство подповерхностного зондирования, используемое для решения задачи определения координат точечной цели при подповерхностном зондировании. Устройство содержит антенную систему с приемо-передающей и приемной антеннами, антенный коммутатор, передатчик, первый и второй малошумящие усилители, первый и второй детекторы, индикаторный блок, синхронизатор, делитель частоты на два (далее делитель на два), первый, второй и третий квадраторы, первый и второй перемножители, первый, второй, третий, четвертый и пятый сумматоры, блок извлечения квадратного корня, блок ввода данных, делитель, первый и второй цифровые измерители длительности интервалов времени (Патент РФ №2433423, опубл. 10.11.2011).

Недостатком известного устройства является невозможность его использования для определения длины линейного контрастного подповерхностного объекта при зондировании исследуемого пространства, поскольку обработка принимаемого сигнала, использованная в прототипе, не позволяет извлечь информацию о длине предмета.

В основу изобретения положена задача определения длины линейного контрастного по электромагнитным характеристикам относительно вмещающего пространства подповерхностного объекта.

Поставленная задача решается тем, что устройство подповерхностного зондирования, включающее приемо-передающую антенну, антенный коммутатор, передатчик, малошумящий усилитель, детектор, индикаторный блок, синхронизатор, первый и второй квадраторы, первый блок извлечения квадратного корня, первый и второй перемножители, сумматор, делитель на два, цифровой измеритель длительности интервала времени и блок ввода данных, согласно изобретению дополнительно содержит два триггера Шмитта, пять схем совпадений, четыре инвертора, три D-триггера, второй блок извлечения квадратного корня, JK-триггер, схему логического сложения, делитель на четыре и счетчик, причем к выходу синхронизатора подключены последовательно соединенные передатчик, антенный коммутатор с подключенной к нему приемо-передающей антенной, малошумящий усилитель, детектор, первый квадратор, первый блок извлечения квадратного корня, первый триггер Шмитта, первый и второй D-триггеры, первый инвертор, первая схема совпадений, схема логического сложения, второй инвертор, третий D-триггер, вторая и третья схемы совпадений, JK-триггер, четвертая схема совпадений, счетчик, первый перемножитель, второй квадратор, делитель на четыре, сумматор, второй блок извлечения квадратного корня и индикаторный блок, между выходом передатчика и вторым входом сумматора последовательно включены второй триггер Шмитта, цифровой измеритель длительности интервала времени, делитель на два и второй перемножитель, второй вход которого соединен с выходом первого премножителя, а его третий вход соединен с блоком ввода данных и вторым входом первого перемножителя, второй вход JK-триггера соединен с выходом пятой схемы совпадений, первый вход которой соединен с выходом второй схемы совпадений, а ее второй вход подключен к выходу JK-триггера и входу третьего инвертора, который выходом соединен со вторым входом третьей схемы совпадений, между выходом и вторым входом третьего D-триггера включен четвертый инвертор, выход синхронизатора также соединен с третьим входом JK-триггера и со вторыми входами первого и второго D-триггеров, четвертой схемы совпадений и цифрового измерителя длительности интервала времени, чей третий вход соединен с выходом первого триггера Шмитта, второй вход первой схемы совпадений соединен с выходом первого D-триггера, второй вход второй схемы совпадений соединен с выходом первой схемы совпадений, а второй вход схемы логического сложения соединен с выходом второго триггера Шмитта.

На фиг.1 приведена структурная схема устройства подповерхностного зондирования, на фиг.2 приведены геометрия подповерхностного зондирования и процесс формирования отраженного от линейного объекта сигнала, где ППА - приемо-передающая антенна, а на фиг.3 приведены временные диаграммы, поясняющие принцип работы предлагаемого устройства (цифры в кружках указывают на блок, выходу которого соответствует временная диаграмма).

Устройство подповерхностного зондирования содержит синхронизатор 1, последовательно соединенный с передатчиком 2, антенным коммутатором 3 и приемо-передающей антенной 4. Ко второму выводу антенного коммутатора 3 подключены последовательно соединенные малошумящий усилитель 5, детектор 6, первый квадратор 7-1, первый блок 8-1 извлечения квадратного корня, первый триггер 9-1 Шмитта, первый и второй D-триггеры 10-1 и 10-2, первый инвертор 11-1, первая схема 12-1 совпадений, схема 13 логического сложения, второй инвертор 11-2, третий D-триггер 10-3, вторая и третья схемы 12-2 и 12-3 совпадений, JK-триггер 14, четвертая схема 12-4 совпадений, счетчик 15, первый перемножитель 16-1, второй квадратор 7-2, делитель 17 на четыре, сумматор 18, второй блок 8-2 извлечения квадратного корня и индикаторный блок 19. К выходу передатчика 2 также подключены соединенные последовательно второй триггер 9-2 Шмитта, цифровой измеритель 20 длительности интервала времени, делитель 21 на два и второй перемножитель 16-2, который своим выходом подключен ко второму входу сумматора 18, вторым входом соединен с выходом первого премножителя 16-1, а его третий вход соединен с блоком 22 ввода данных и со вторым входом первого перемножителя 16-1. JK-триггер 14 своим вторым входом соединен с выходом пятой схемы 12-5 совпадений, которая первым входом соединена с выходом второй схемы 12-2 совпадений, а вторым своим входом - с выходом JK -триггера 14 и входом третьего инвертора 11-3, чей выход соединен со вторым входом третьей схемы 12-3 совпадений. Между выходом и вторым входом третьего D-триггера 10-3 включен четвертый инвертор 11-4. Синхронизатор 1 своим выходом также соединен с третьим входом JK-триггера 14 и со вторыми входами первого и второго D-триггеров 10-1 и 10-2, четвертой схемы 12-4 совпадений и цифрового измерителя 20 длительности интервала времени, который своим третьим входом соединен с выходом первого триггера 9-1 Шмитта. Первая схема 12-1 совпадений вторым входом соединена с выходом первого D-триггера 10-1, вторая схема 12-2 совпадений своим вторым входом соединена с выходом первой схемы 12-1 совпадений, а схема 13 логического сложения вторым входом соединена с выходом второго триггера 9-2 Шмитта.

Работает устройство подповерхностного зондирования следующим образом. Синхронизатором 1 формируется бесконечная последовательность коротких электрических импульсов, следующих с частотой квантования fкв. Этими импульсами запускается передатчик 2, в котором частота fкв понижается до частоты следования зондирующих радиоимпульсов, которые представляют собой один период синусоидального колебания длительностью τи (фиг.3, эпюра 2). Зондирующие сигналы через антенный коммутатор 3 возбуждают приемо-передающую антенну 4 и одновременно подаются на второй триггер 9-2 Шмитта, формирующий из них прямоугольные импульсы, которые по первому входу запускают цифровой измеритель 20 длительности интервала времени.

Зондирующий сигнал излучается приемо-передающей антенной 4 в исследуемое подповерхностное пространство и после отражения от линейного контрастного подповерхностного объекта, осуществляется прием отраженного сигнала этой же приемо-передающей антенной 4. Приемо-передающая антенна 4 располагается на поверхности исследуемого пространства. Пусть оптическая ось приемо-передающей антенны 4 перпендикулярна крайнему положению объекта, тогда глубина залегания объекта определяется произведением скорости V распространения зондирующего сигнала в подповерхностном пространстве на время t0 прохождения зондирующим сигналом расстояния от приемо-передающей антенны 4 до объекта.

Антенный коммутатор 3 обеспечивает переключение зондирующих (излучаемых) и принимаемых сигналов в режиме прием-передача с целью развязки достаточно мощного зондирующего сигнала с выхода передатчика 2 от входа малошумящего усилителя 5. Принятый приемо-передающей антенной 4 отраженный от объекта сигнал через антенный коммутатор 3 поступает на вход малошумящего усилителя 5, где он усиливается и поступает на детектор 6, где происходит выделение огибающей этого сигнала. Огибающая с выхода детектора 6 имеет вид двух импульсов, разнесенных по времени, первый из которых имеет положительную и отрицательную полярность, второй - только отрицательную.

Изменение формы отраженного импульса относительно излучаемого зондирующего импульса объясняется следующим. При исследовании взаимодействия падающей волны и проводящего тела широко распространена модель тела в виде набора точечных отражателей (Е.А.Штагер. Рассеяние радиоволн на телах сложной формы. - М.: Радио и связь, 1986). Отраженный сигнал формируется как сумма отражений от каждого точечного отражателя с учетом задержки по времени за счет движения падающей волны вдоль предмета. Моделирование этого процесса показывает, что в составе сигнала, отраженного от линейного предмета, присутствуют (фиг.2):

- искаженный радиоимпульс, формируемый в начальной области взаимодействия зондирующего импульса и отражающего предмета;

- колоколообразный импульс отрицательной полярности, формируемый при сходе зондирующего импульса с отражающего предмета;

- область нулевой постоянной составляющей, разделяющей искаженный радио- и отрицательный колоколообразный импульсы.

Формирование искаженного радиоимпульса в начале и отрицательного колоколообразного импульса в конце отраженного сигнала объясняется тем, что на интервале времени регистрации отраженного сигнала происходит суммирование сигнала (повторяющего форму зондирующего), отраженного от первого точечного элемента, с сигналами, отраженными от соседних точечных элементов, каждый из которых задержан на время:

где Δd - расстояние между центрами соседних точечных элементов объекта,

Z - глубина залегания объекта,

т=1, 2,…N=L/Δd - текущий номер точечного элемента, L - искомая длина объекта.

В основе измерения длины L объекта лежит измерение интервала времени от начала регистрации искаженного радиоимпульса до начала регистрации отрицательного колоколообразного импульса tзN. Для этого сигнал с выхода детектора 6 поступает на квадратор 7-1, где его значение возводится в квадрат и подается на первый блок 8-1 извлечения квадратного корня, где происходит операция извлечения квадратного корня. Последние две процедуры производят операцию взятия модуля выделенной огибающей принятого сигнала. Далее импульсы с выхода первого блока 8-1 извлечения квадратного корня поступают на первый триггер 9-1 Шмитта, где из них формируются прямоугольные импульсы с крутыми фронтами, которые поступают на третий вход цифрового измерителя 20 длительности интервала времени, что останавливает подсчет квантующих импульсов его счетчиком. Квантование цифрового измерителя 20 длительности интервала времени осуществляется по его второму входу частотой fкв с выхода синхронизатора 1. Поскольку длительность интервала времени, измеряемого в цифровом измерителе 20, формируется в результате прохождения импульсом двойного расстояния до крайнего положения линейного объекта, то для получения значения t0 необходимо измеренное значение разделить на два, для чего используется делитель 21 на два.

В связи с тем, что фронт прямоугольного импульса с выхода второго триггера 9-2 Шмитта, запускающего цифровой измеритель 20 длительности интервала времени, не совпадает по времени с фронтом импульса квантующей последовательности, запускающего передатчик 2 с выхода синхронизатора 1, и априорно неизвестно время прихода прямоугольного импульса по третьему входу измерителя 20, то измеренное значение 2tн0 в виде числа 2N0, с выхода цифрового измерителя 20 длительности интервала времени будет иметь погрешность квантования начала Δtн0 и конца Δtк0 измеряемого интервала времени. Цифровые измерители длительности интервалов времени широко известны и достаточно глубоко описаны (например, в книге: Цифровая фазометрия. - Радио и связь, 1993, автор М.К.Чмых).

С выхода первого триггера 9-1 Шмитта прямоугольные импульсы также подаются на первый вход первого D-триггера 10-1, где они привязываются к периоду квантующей последовательности для синхронной работы последующей схемы. Далее сигнал с выхода первого D-триггера 10-1 подается на первый вход второго D-триггера 10-2, где он задерживается на один период квантующей последовательности tкв и затем подается на первый инвертор 11-1, где происходит его инверсия. Инверсный сигнал с выхода первого инвертора 11-1 подается на первый вход первой схемы 12-1 совпадений, на второй вход которой подается сигнал с выхода первого D-триггера 10-1, в результате чего на выходе первой схемы 12-1 совпадений синхронно с фронтами прямоугольных импульсов с выхода первого D-триггера 10-1 и с фронтами импульсов с выхода синхронизатора 1 формируются короткие прямоугольные импульсы длительностью, равной периоду квантующей последовательности tкв, которые подаются на первый вход схемы 13 логического сложения и на второй вход второй схемы 12-2 совпадений. На второй вход схемы 13 логического сложения подается импульс с выхода второго триггера 9-2 Шмитта, в результате чего формируется последовательность импульсов, представленная на эпюре 13 фиг.3, которая затем инвертируется во втором инверторе 11-2 и подается на первый вход (вход синхронизации) третьего D-триггера 10-3. В начальный момент времени на второй вход (вход данных) третьего D-триггера 10-3 подается уровень логической единицы, которая защелкивается на его выход по первому положительному фронту на первом его входе, тем самым сбрасывая через четвертый инвертор 11-4 состояние своего второго входа в уровень логического нуля. Состояние логической единицы на выходе третьего D-триггера 10-3 сохраняется до прихода на его первый вход следующего положительного фронта, сбрасывающего его выход в уровень логического нуля, тем самым через четвертый инвертор 11-4 устанавливая состояние своего второго входа в уровень логической единицы. Последующая работа триггера аналогична вышеописанному. Далее сигнал с выхода третьего D-триггера 10-3 подается на первый вход второй схемы 12-2 совпадений, в результате чего на ее выходе формируются два коротких импульса длительностью, равной периоду квантующей последовательности tкв. Длительность между импульсами с выхода второй схемы 12-2 совпадений соответствует длительности интервала времени от начала регистрации искаженного радиоимпульса до начала регистрации отрицательного колоколообразного импульса. Импульсы с выхода второй схемы 12-2 совпадений подаются на первые входы пятой и третьей схем 12-5 и 12-3 совпадений. Поскольку в начальный момент времени на второй вход третьей схемы 12-3 совпадений подается уровень логической единицы с выхода третьего инвертора 11-3, а на второй вход пятой схемы 12-5 совпадений подается уровень логического нуля, первый из импульсов с выхода второй схемы 12-2 совпадений через третью схему 12-3 совпадений поступает на первый вход JK-триггера 14, тем самым синхронно с импульсом, поступающим по третьему входу с синхронизатора 1, устанавливая его выход в уровень логической единицы, который подается на первый вход четвертой схемы 12-4 совпадений, на второй вход которой подаются импульсы квантующей последовательности с выхода синхронизатора 1, и тем самым происходит запуск счетчика 15. Уровень логической единицы на выходе JK-триггера 14 будет сохраняться до тех пор, пока на третью и пятую схемы 12-3 и 12-5 совпадений не поступит второй короткий импульс с выхода второй схемы 12-2 совпадений, на момент поступления которого на второй вход третьей схемы 12-3 совпадений будет подан уровень логического нуля, а на второй вход пятой схемы 12-5 совпадений - уровень логической единицы. Таким образом, второй короткий импульс с выхода второй схемы 12-2 совпадений через пятую схему 12-5 совпадений поступает на второй вход JK-триггера 14 и синхронно с синхронизатором 1 сбрасывает его состояние в уровень логического нуля, который далее через четвертую схему 12-4 совпадений останавливает работу счетчика 15.

Измеренное значение τзN в виде числа N1 с выхода счетчика 15 поступает на первый вход первого перемножителя 16-1, где оно умножается на константу V, поступающую на второй его вход с блока 22 ввода данных. С выхода первого перемножителя 16-1 число VN1 поступает на вход второго квадратора 7-2 и на второй вход второго перемножителя 16-2, на первый вход которого с выхода делителя 21 на два поступает значение t0 в виде числа N0, а на третий его вход поступает также константа V с блока 22 ввода данных. Во втором квадраторе 7-2 производится операция возведения в квадрат числа VN1. Число (VN1)2 с выхода второго квадратора 7-2 поступает на вход делителя 17 на четыре, с выхода которого число (VN1)2/4 поступает на первый вход сумматора 18, где оно складывается со значением V2N0N1, поступающим на второй его вход с выхода второго перемножителя 16-2. Значение (VN1)2/4+V2N0N1 с выхода сумматора 18 поступает на второй блок 8-2 извлечения квадратного корня, где происходит операция извлечения квадратного корня.

Значение L, соответствующее длине линейного контрастного подповерхностного объекта, с выхода второго блока 8-2 извлечения квадратного корня подается на индикаторный блок 19. На индикаторном блоке 19 отображается численное значение длины L линейного подповерхностного объекта , с точностью до погрешности выполнения вычислительных операций.

Таким образом, предлагаемое устройство по сравнению с прототипом позволяет определять длину линейного контрастного по электромагнитным характеристикам относительно вмещающего пространства подповерхностного объекта.

Устройство подповерхностного зондирования, включающее приемо-передающую антенну, антенный коммутатор, передатчик, малошумящий усилитель, детектор, индикаторный блок, синхронизатор, первый и второй квадраторы, первый блок извлечения квадратного корня, первый и второй перемножители, сумматор, делитель на два, цифровой измеритель длительности интервала времени и блок ввода данных, отличающееся тем, что дополнительно содержит два триггера Шмитта, пять схем совпадений, четыре инвертора, три D-триггера, второй блок извлечения квадратного корня, JK-триггер, схему логического сложения, делитель на четыре и счетчик, причем к выходу синхронизатора подключены последовательно соединенные передатчик, антенный коммутатор с подключенной к нему приемо-передающей антенной, малошумящий усилитель, детектор, первый квадратор, первый блок извлечения квадратного корня, первый триггер Шмитта, первый и второй D-триггеры, первый инвертор, первая схема совпадений, схема логического сложения, второй инвертор, третий D-триггер, вторая и третья схемы совпадений, JK-триггер, четвертая схема совпадений, счетчик, первый перемножитель, второй квадратор, делитель на четыре, сумматор, второй блок извлечения квадратного корня и индикаторный блок, между выходом передатчика и вторым входом сумматора последовательно включены второй триггер Шмитта, цифровой измеритель длительности интервала времени, делитель на два и второй перемножитель, второй вход которого соединен с выходом первого премножителя, а его третий вход соединен с блоком ввода данных и вторым входом первого перемножителя, второй вход JK-триггера соединен с выходом пятой схемы совпадений, первый вход которой соединен с выходом второй схемы совпадений, а ее второй вход подключен к выходу JK-триггера и входу третьего инвертора, который выходом соединен со вторым входом третьей схемы совпадений, между выходом и вторым входом третьего D-триггера включен четвертый инвертор, выход синхронизатора также соединен с третьим входом JK-триггера и со вторыми входами первого и второго D-триггеров, четвертой схемы совпадений и цифрового измерителя длительности интервала времени, чей третий вход соединен с выходом первого триггера Шмитта, второй вход первой схемы совпадений соединен с выходом первого D-триггера, второй вход второй схемы совпадений соединен с выходом первой схемы совпадений, а второй вход схемы логического сложения соединен с выходом второго триггера Шмитта.
УСТРОЙСТВО ПОДПОВЕРХНОСТНОГО ЗОНДИРОВАНИЯ
УСТРОЙСТВО ПОДПОВЕРХНОСТНОГО ЗОНДИРОВАНИЯ
УСТРОЙСТВО ПОДПОВЕРХНОСТНОГО ЗОНДИРОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 61-68 из 68.
20.05.2016
№216.015.404c

Способ определения задержки сигналов навигационной спутниковой системы в ионосфере

Изобретение относится к области спутниковой навигации и может быть использовано для определения ионосферной задержки сигнала глобальных спутниковых навигационных систем с помощью двухчастотной навигационной аппаратуры потребителя. Технический результат состоит в повышении точности определения...
Тип: Изобретение
Номер охранного документа: 0002584243
Дата охранного документа: 20.05.2016
25.08.2017
№217.015.ce0f

Командно-телеметрическая система космического аппарата

Изобретение относится к спутниковой системе связи, в частности к системе управления космическим аппаратом (КА ) и предназначено для исключения искажения команд управления, передаваемых с наземного комплекса управления (НКУ) на борт КА, вызванного узкополосной помехой. Для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002620591
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.df81

Система измерения дальности космического аппарата

Изобретение относится к измерению дальности космического аппарата (КА), расположенного на геостационарной орбите. Достигаемый технический результат – повышение точности измерения дальности КА. Указанный результат достигается за счет того, что система измерения дальности КА состоит из...
Тип: Изобретение
Номер охранного документа: 0002625171
Дата охранного документа: 12.07.2017
20.02.2019
№219.016.c339

Индукционная канальная печь

Изобретение относится к области металлургии, в частности к конструкциям индукционных канальных печей для приготовления сплавов и разновесных компонентов, и направлено на повышение эффективности перемешивания расплава в печи и ее производительности за счет исключения зарастания канальной части...
Тип: Изобретение
Номер охранного документа: 0002438272
Дата охранного документа: 27.12.2011
01.03.2019
№219.016.cec4

Линейная индукционная машина

Изобретение относится к электротехнике, к индукционным машинам с естественным охлаждением и может использоваться для перекачивания и перемешивания жидких металлов и сплавов в миксерах, печах, ковшах, слитках. Технический результат состоит в создании бегущего магнитного поля без использования...
Тип: Изобретение
Номер охранного документа: 0002458448
Дата охранного документа: 10.08.2012
29.04.2019
№219.017.45e9

Способ угловой ориентации объекта по сигналам спутниковых радионавигационных систем

Изобретение относится к области радионавигации, может быть использовано для определения угловой ориентации объектов по сигналам космических аппаратов глобальных навигационных спутниковых систем. Достигаемый технический результат - повышение точности определения угловой ориентации объекта в...
Тип: Изобретение
Номер охранного документа: 0002446410
Дата охранного документа: 27.03.2012
19.06.2019
№219.017.89a1

Способ подводного приема радиосигналов

Изобретение относится к области радиотехники, касается радиоприема сигналов на подводном аппарате и может быть использовано для связи и навигации без всплытия аппарата, в том числе в подледном положении. Технический результат изобретения заключается в повышении чувствительности и глубины...
Тип: Изобретение
Номер охранного документа: 0002453037
Дата охранного документа: 10.06.2012
29.06.2019
№219.017.a1c2

Способ функционирования распределенных измерительно-управляющих систем

Изобретение относится к области информационно-измерительной техники и может быть использовано для построения распределенных измерительно-управляющих систем с удаленным доступом к объектам исследования и средствам управления и измерения с повышенной пропускной способностью. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002468420
Дата охранного документа: 27.11.2012
Показаны записи 61-70 из 70.
20.02.2016
№216.014.ce16

Способ функционирования распределенных измерительно-управляющих систем

Изобретение относится к области информационно-измерительной техники. Технический результат - уменьшение среднего времени реакции системы на запросы пользователей. Способ функционирования распределенных измерительно-управляющих систем включает формирование на персональной ЭВМ пользователя...
Тип: Изобретение
Номер охранного документа: 0002575410
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.3114

Способ угловой ориентации объекта

Изобретение относится к космической навигации и может быть использовано в системах получения информации о навигационных параметрах космических аппаратов (КА) на геостационарных орбитах (ГСО) относительно геоцентрической системы координат (ГЦСК). Технический результат заключается в высокоточном...
Тип: Изобретение
Номер охранного документа: 0002580827
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33de

Фазовая радионавигационная система

Изобретение относится к области радиотехники и может быть использовано для обеспечения навигации и геодезической привязки надводных стационарных и подвижных объектов. Технический результат - обеспечение высокой точности определения координат, достигаемый за счет исключения ошибок определения...
Тип: Изобретение
Номер охранного документа: 0002582068
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.404c

Способ определения задержки сигналов навигационной спутниковой системы в ионосфере

Изобретение относится к области спутниковой навигации и может быть использовано для определения ионосферной задержки сигнала глобальных спутниковых навигационных систем с помощью двухчастотной навигационной аппаратуры потребителя. Технический результат состоит в повышении точности определения...
Тип: Изобретение
Номер охранного документа: 0002584243
Дата охранного документа: 20.05.2016
25.08.2017
№217.015.ce0f

Командно-телеметрическая система космического аппарата

Изобретение относится к спутниковой системе связи, в частности к системе управления космическим аппаратом (КА ) и предназначено для исключения искажения команд управления, передаваемых с наземного комплекса управления (НКУ) на борт КА, вызванного узкополосной помехой. Для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002620591
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.df81

Система измерения дальности космического аппарата

Изобретение относится к измерению дальности космического аппарата (КА), расположенного на геостационарной орбите. Достигаемый технический результат – повышение точности измерения дальности КА. Указанный результат достигается за счет того, что система измерения дальности КА состоит из...
Тип: Изобретение
Номер охранного документа: 0002625171
Дата охранного документа: 12.07.2017
10.07.2018
№218.016.6f3d

Доплеровский измеритель скорости космического аппарата

Изобретение относится к радиотехнике и может быть использовано в системах радиосвязи для повышения точности измерения скорости движения космических аппаратов (КА). Достигаемый технический результат - повышение точности измерения скорости космического аппарата за счет уменьшения случайной...
Тип: Изобретение
Номер охранного документа: 0002660676
Дата охранного документа: 09.07.2018
12.07.2018
№218.016.6f97

Цифровой фазометр

Изобретение относится к радиотехнике, в частности к устройствам измерения сдвига фаз между сигналами несинхронизированных по частоте генераторов близких частот для радионавигационных и радиогеодезических приложений. Сущность заявленного технического решения заключается в том, что в цифровой...
Тип: Изобретение
Номер охранного документа: 0002661065
Дата охранного документа: 11.07.2018
26.06.2019
№219.017.9212

Командно-измерительная система космического аппарата

Изобретение относится к области радиотехники и, более конкретно, к командно-измерительным системам (КИС) космических аппаратов (КА). Технический результат заключается в повышении помехоустойчивости линии передачи командных и дальномерных сигналов в процессе управления КА, расположенных на...
Тип: Изобретение
Номер охранного документа: 0002692418
Дата охранного документа: 24.06.2019
21.03.2020
№220.018.0e23

Контрольно-проверочная аппаратура космического аппарата

Изобретение относится к области радиотехники, в частности к автоматизированным электрическим испытаниям бортовых ретрансляционных комплексов телекоммуникационных космических аппаратов (КА) в процессе проектирования, производства на заводе-изготовителе, а также при заводских, приемо-сдаточных и...
Тип: Изобретение
Номер охранного документа: 0002717293
Дата охранного документа: 19.03.2020
+ добавить свой РИД