×
10.10.2014
216.012.fadc

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДСОДЕРЖАЩЕГО ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002530066
Дата охранного документа
10.10.2014
Аннотация: Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси. В способе в качестве источника сырья используют по крайней мере два параллельных потока, содержащих низшие алканы. Первый поток перед направлением на парциальное окисление смешивают с водяным паром и кислородсодержащим газом. После этого проводят каталитическую реакцию парциального окисления, продукты которой смешивают со вторым потоком и проводят каталитическую реакцию адиабатической конверсии с получением водородсодержащего газа. Проводят нагрев второго потока в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления первого потока. В качестве кислородсодержащего газа используют сжатый воздух или выхлопные газы газовой турбины высокого давления. Техническим результатом является снижение капитальных затрат, уменьшение содержания балластных газов в продукционном газе. 11 з.п. ф-лы, 1 ил., 4 табл., 1 пр.

Изобретение относится к способу получения водородсодержащего газа, водорода, водород-метановой смеси, синтез-газа, содержащего в основном H2 и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси.

Известен способ получения синтез-газа, содержащего в основном H2 и СО, для производства спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, описанный в патенте RU №2228901, дата публ. 2004.05.20, МПК С01В 3/38. Известный способ получения синтез-газа с заданным соотношением H2/СО в диапазоне от 1,0 до 2,0 включает две стадии: стадию А) парциального окисления и стадию Б) конверсии остаточного метана с продуктами стадии А) на катализаторе. Стадию А) парциального окисления проводят в две ступени: а) некаталитического парциального окисления природного газа кислородом с получением в продуктах реакции неравновесного содержания H2O и CH4 при мольном соотношении кислорода и метана, примерно равном 0,76-0,84, б) конверсии продуктов реакции ступени а) с корректирующими добавками CO2 и H2O или Н2О и СН4 с получением газовой смеси, которая проходит конверсию остаточного метана водяным паром на катализаторе. Способ позволяет производить синтез-газ с составом, который отвечает заданному соотношению СО/H2. Способ можно использовать для получения водорода, а также исходного сырья для дальнейших процессов синтеза спиртов, диметилового эфира, аммиака или других крупнотоннажных химических продуктов.

Однако описанный способ обладает рядом недостатков, к которым можно отнести функциональные и экономические ограничения применения способа, связанные с необходимостью подачи больших расходов кислорода (превышающих по массе расход конвертируемого природного газа), производство которого требует больших энергетических (до 1000 кВт·час/т) и капитальных затрат (до 1500 дол. США/кг·ч-1). Серьезной проблемой также является сажеобразование, резко снижающее активность катализаторов.

Известен способ получения водородсодержащего газа - аммиака из углеводородного сырья, водяных паров, воздуха, включает компримирование и очистку сырья от соединений серы, паровую и паровоздушную каталитическую конверсию метана, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородсодержащих соединений, компримирование, синтез аммиака в замкнутом цикле, использование неочищенного от соединений серы сырья в качестве топлива, утилизацию тепла дымовых газов и выделение их в окружающую среду и отличается тем, что часть сырья, равную 0,001-0,048 от количества углеводородного сырья, прошедшего очистку от соединений серы, сжигают в смеси с компримированным воздухом, а полученные дымовые газы в количестве 0,0146-1,685 от количества воздуха, направляемого на паровоздушную каталитическую конверсию метана, подают на паровоздушную каталитическую конверсию метана (патент RU2196733, дата публ. 20.01.2003 - аналог).

К недостаткам способа следует отнести низкую термодинамическую эффективность способа, связанную с затратами на компримирование воздуха, низкую степень конверсии метана и высокое содержание балластных газов (азот, аргон) в продуцируемом газе.

Известен способ получения водород-метановой смеси, описанный в заявке на изобретение RU №2012148149, дата подачи 18.10.2012, - прототип, в котором в качестве источника сырья используют по крайней мере два параллельных потока, содержащих низшие алканы, один из которых направляют на парциальное окисление, при этом первый поток направляют на парциальное окисление кислородсодержащим газом, а второй поток смешивают с водяным паром и пропускают через серию последовательных стадий, каждая из которых включает нагрев в нагревающем теплообменнике за счет отвода тепла от процесса парциального окисления первого потока, а затем через адиабатический реактор конверсии, заполненный насадкой катализатора. Недостатками данного решения являются высокие капитальные затраты и металлоемкость процесса, сниженная эффективность использования сырья.

Технический результат изобретения состоит в том, чтобы создать новый способ, позволяющий повысить эффективность конверсии низших алканов и термодинамическую эффективность способа, снизить капитальные затраты и металлоемкость, уменьшить содержание балластных газов (азот, аргон) в продуцируемом газе.

Поставленная задача решается тем, что:

В способе получения водородсодержащего газа, в котором в качестве источника сырья используют по крайней мере два параллельных потока, содержащих низшие алканы, один из которых направляют на парциальное окисление, первый поток направляют на смешение с водяным паром и кислородсодержащим газом, после чего проводят каталитическую реакцию парциального окисления, продукты которой смешивают со вторым потоком и проводят каталитическую реакцию адиабатической конверсии с получением водородсодержащего газа.

- проводят нагрев второго потока в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления первого потока;

- в качестве кислородсодержащего газа используют сжатый воздух или выхлопные газы газовой турбины высокого давления;

- проводят очистку потоков от соединений серы;

- проводят получение водяного пара за счет охлаждения водородсодержащего газа;

- в адиабатическом реакторе поддерживают температуру в диапазоне от 500°С до 700°С;

- низшие алканы содержат от одного до четырех атомов углерода, включая метан;

- давление потоков выбирают в диапазоне от 0.1 до 9.0 МПа;

- после выхода водородсодержащего газа из адиабатического реактора его подают на каталитическую конверсию моноксида углерода;

- парциальное окисление кислородсодержащим газом ведут в реакторе парциального окисления в присутствии катализатора окисления, выбранного из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды такие, как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия;

- объемное содержание водяного пара перед первой стадией адиабатической конверсии второго потока поддерживают в диапазоне от 4 до 12 раз большем, чем объемное содержание алканов;

- насадка катализатора адиабатического реактора конверсии содержит в качестве активных компонентов металл, выбранный из группы родий, никель, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения. На фигуре дана схема реализации способа, где 1 - природный газ-метан, 2 - метан первого потока, 3 - метан второго потока, 4 - узел смешения первого потока, 5 - водяной пар, 6 - смеситель, 7 - кислородсодержащий газ, 8 - узел смешения окислителей, 9 - камера окисления, 10 - реактор парциального окисления, 11 - продукты окисления первого потока, 12 - узел смешения второго потока, 13 - адиабатический реактор, 14 - продуцируемый газ.

Примером реализации изобретения служит способ получения водородсодержащего газа, описанный ниже. В излагаемом примере осуществления изобретения в качестве низшего алкана применяется природный газ-метан, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам переработки природного и попутного газов.

Пример 1.

Общий поток природного газа 1 с давлением 3.0 МПа подвергают очистке от соединений серы (если они содержатся в виде примесей в природном газе) в пересчете на серу до массовой концентрации серы менее 0.5 мг/нм3, разделяют на два потока, первый поток 2 смешивают с перегретым потоком водяного пара высокого давления 5 в узле смешения 4 и полученную парогазовую смесь первого потока направляют в смеситель 6, в который подают также кислородсодержащий газ 7, предварительно смешанный с водяным паром 5 в узле смешения окислителей 8. В смеси с нагретым водяным паром из смесителя 6 полученная парогазовая смесь первого потока поступает в камеру окисления 9, где происходит реакция парциального окисления метана с нагревом парогазовой смеси первого потока, конвертируемой затем внутри зернистого слоя катализатора, размещаемого в реакторе парциального окисления 10. Из реактора 10 продукты окисления первого потока 11 подают в узел смешения второго потока 12, в котором происходит их смешение с метаном второго потока 3, после чего смесь газов подают в адиабатический реактор конверсии 13, в котором на катализаторе происходит конверсия парогазовой смеси второго потока с образованием продуцируемого газа 14, который потом могут направить на конверсию каталитическую конверсию монооксида углерода с последующим выводом из продуцируемого газа 14 диоксида углерода, используемого как товарный продукт или для захоронения в соответствии с Киотскими соглашениями. В последнем случае технология не имеет выброса парниковых газов.

В реакторе парциального окисления 10 реакцию ведут в зернистом слое в присутствии катализатора окисления, выбранного из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды такие, как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия. В качестве кислородсодержащего газа используют сжатый воздух или выхлопные газы газовой турбины высокого давления.

В адиабатическом реакторе 13, соответственно, поддерживают температуру в диапазоне ориентировочно от 500 до 700°С. Насадка катализатора адиабатического реактора конверсии 13 содержит в качестве активных компонентов металл, выбранный из группы родий, никель, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения. В качестве катализатора адиабатического реактора конверсии 13 предпочтительно использовать никелевый катализатор типа ГИАП-16 или катализаторы марки KATALCO 25-4Q и KATALCO 57-4Q компании Johnson Matthey. Состав катализатора с изменением содержания платиноидов, а также металлов, влияющих на кинетику окисления оксида углерода водяным паром (реакция сдвига) позволит управлять содержанием водорода в конечном продукте.

В сырьевом газе 1, первом и втором потоках 2 и 3, соответственно, низшие алканы содержат от одного до четырех атомов углерода, включая метан, что позволяет использовать для получения продукта легкие углеводороды различного типа: попутные газы, газы коксования, газ угольных пластов, продукты ферментации сельскохозяйственных или муниципальных отходов и газообразные потоки нефтепереработки. В общем случае в первом и втором потоках 2 и 3, соответственно, состав газа может быть различным, что расширяет сферу применения предложенного способа.

Давление потоков выбирают в диапазоне ориентировочно от 0.1 до 9.0 МПа, что позволяет уменьшить размеры аппаратов, снизить газодинамические потери и затраты на компримирование.

Объемное содержание водяного пара перед реакцией адиабатической конверсии в реакторе 13 поддерживают в диапазоне ориентировочно от 2 до 8 раз большем, чем объемное содержание алканов. При снижении отношения пар/газ ниже 2 снижается эффективность процесса и растут капитальные затраты, что связано либо с необходимостью увеличить поток рециркуляции газов в связи с низкой степенью конверсии при указанной ниже температуре нагрева потока либо с необходимостью увеличить температуру нагрева потока свыше 1000-1200°С, что заставит использовать более дорогие материалы для теплообменника. Повышение отношения пар-газ свыше 8 также вызовет снижение эффективности процесса в связи с необходимостью производить избыточный водяной пар.

Из продуцируемого газа 14 в узле выделения водорода (на фигуре не показан) выделяют водород с помощью мембранной диффузии, короткоцикловой адсорбции или высокотемпературного электрохимического фильтра с протонной проводимостью. Задачи извлечения и концентрирования водорода в циклах нефте- и газоперерабатывающих производств успешно решаются с помощью мембранных и адсорбционных водородных установок. В частности, адсорбционные установки ГРАСИС, работающие на сверхкоротком цикле, предназначены для производства высокочистого водорода из газовых потоков и позволяют получать водород с чистотой до 99,9995% при минимальном падении давления в процессе разделения.

При электрохимическом выделении водорода особый интерес представляют протонные проводники: высокие концентрации протонов и высокая обратимость процессов позволяет рассматривать этот класс протонных проводников как одни из наиболее перспективных матриц для протонного транспорта. Размерный композитный эффект (значительное повышение проводимости в композитах типа «ионный проводник|инертный оксид») возможен в гидратированных высокотемпературных протонных проводниках со структурным разупорядочением.

Охлаждение продуцируемого газа 14 могут производить за счет нагрева входящих потоков, включая метан второго потока, за счет получения вторичного водяного пара или нагретой воды с последующей конденсацией воды в продуцируемом газе 14, что позволяет вернуть конденсат в процесс путем получения водяного пара 5.

В таблицах представлены расчеты процесса в первом потоке.

Составы и теплофизические характеристики конверсии первого потока при давлении 3.0 МПа.

Таблица 1
ПАРОГАЗОВАЯ СМЕСЬ 4 ПОСЛЕ СМЕШЕНИЯ В УЗЛЕ СМЕШЕНИЯ 4
пар:газ = 2.7400
температура = 500°С
вещество влажный газ, % сухой газ, %
CO2
N2
H2O
СН4
0.08021
0.22995
73.26203
26.42781
0.30000
0.86000
0.00000
98.84000

Таблица 2
ПАРОКИСЛОРОДНАЯ СМЕСЬ 1 НА ВЫХОДЕ ИЗ СМЕСИТЕЛЯ 8
пар:газ = 0.1000
температура = 450°С
вещество влажный газ, % сухой газ, %
O2
N2
H2O
AR
18.63636
71.81818
9.09091
0.45455
20.50000
79.00000
0.00000
0.50000

Таблица 3
ГАЗ ПЕРВОГО ПОТОКА НА ВХОДЕ В ЗЕРНИСТЫЙ СЛОЙ РЕАКТОРА 10
пар:газ = 1.157
температура = 1206°С
вещество влажный газ, % сухой газ, %
CO2
N2
H2O
AR
СН4
4.05829
31.05742
53.65376
0.19574
11.03480
8.75645
67.01173
0.00000
0.42234
23.80948

ГАЗ ПЕРВОГО ПОТОКА НА ВЫХОДЕ ИЗ ЗЕРНИСТОГО СЛОЯ РЕАКТОРА 10
пар:газ = 0.539
температура = 650°С
вещество влажный газ, % сухой газ, % м3
CO2 6.48068 9.97522 175.365
СО 4.48694 6.90640 121.415
Н2 25.59176 39.39144 692.502
N2 26.38658 40.61485 714.010
AR 0.16630 0.25597 4.500
H2O 32.52362 0.00000 1022.804
СН4 1.85556 2.85612 50.211

Таблица 4
ПРОДУЦИРУЕМЫЙ ГАЗ НА ВЫХОДЕ ИЗ РЕАКТОРА 13
Компонент влажн., % сух., % м3
CO2
СО
Н2
N2
AR
H2O
СН4
7.43059
2.58515
24.86273
23.08445
0.27236
30.29032
11.47439
10.65934
3.70845
35.66612
33.11513
0.39071
0.00000
16.46026
237.358
82.578
794.199
737.395
8.700
967.575
366.531
100.000 100.000 3194.336

Коррекцию температуры и состава газов в реакторе парциального окисления 10 могут проводить путем изменения расхода парогазовой смеси первого потока 2.

Таким образом, в предложенном изобретении удалось снизить капитальные затраты и металлоемкость производства водородсодержащего газа, повысить коэффициент конверсии низших алканов и термодинамическую эффективность способа, снизить содержание балластных газов (азот, аргон) в продуцируемом газе.

Полученные продукты - водородсодержащий газ и его производные (водород, метано-водородная смесь) могут затем использовать в химической промышленности и металлургии, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.


СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДСОДЕРЖАЩЕГО ГАЗА
Источник поступления информации: Роспатент

Показаны записи 21-24 из 24.
13.01.2017
№217.015.8296

Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов

Изобретение относится к способам эксплуатации ядерных реакторов, предназначенных для наработки делящихся химических элементов. Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов включает первоначальную загрузку активной зоны топливными...
Тип: Изобретение
Номер охранного документа: 0002601558
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.894a

Способ оттаивания мерзлых горных пород и грунтов

Изобретение относится к химической, горнодобывающей промышленности, в частности к искусственному оттаиванию мерзлых пород в горном деле и строительстве, и может быть использовано при разработке россыпных месторождений, в том числе с применением внешних энергоисточников, в особенности ядерных....
Тип: Изобретение
Номер охранного документа: 0002602460
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8a2a

Способ аккумулирования водорода

Изобретение относится к способу аккумулирования водорода и может быть использовано в химической промышленности для переработки углеводородных газов, а также в системах транспорта и водородных технологий. Нагретый поток, содержащий водяной пар и низшие алканы, имеющие от одного до четырех атомов...
Тип: Изобретение
Номер охранного документа: 0002604228
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e428

Способ преобразования энергии

Изобретение относится преимущественно к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую. Способ преобразования энергии предусматривает подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания...
Тип: Изобретение
Номер охранного документа: 0002626291
Дата охранного документа: 25.07.2017
Показаны записи 21-30 из 35.
13.01.2017
№217.015.8296

Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов

Изобретение относится к способам эксплуатации ядерных реакторов, предназначенных для наработки делящихся химических элементов. Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов включает первоначальную загрузку активной зоны топливными...
Тип: Изобретение
Номер охранного документа: 0002601558
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.894a

Способ оттаивания мерзлых горных пород и грунтов

Изобретение относится к химической, горнодобывающей промышленности, в частности к искусственному оттаиванию мерзлых пород в горном деле и строительстве, и может быть использовано при разработке россыпных месторождений, в том числе с применением внешних энергоисточников, в особенности ядерных....
Тип: Изобретение
Номер охранного документа: 0002602460
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8a2a

Способ аккумулирования водорода

Изобретение относится к способу аккумулирования водорода и может быть использовано в химической промышленности для переработки углеводородных газов, а также в системах транспорта и водородных технологий. Нагретый поток, содержащий водяной пар и низшие алканы, имеющие от одного до четырех атомов...
Тип: Изобретение
Номер охранного документа: 0002604228
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e428

Способ преобразования энергии

Изобретение относится преимущественно к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую. Способ преобразования энергии предусматривает подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания...
Тип: Изобретение
Номер охранного документа: 0002626291
Дата охранного документа: 25.07.2017
15.12.2018
№218.016.a7fe

Аппарат и способ получения водородсодержащего газа

Изобретение относится к аппарату и способу получения водородсодержащего газа. Способ включает в себя подачу парометановой смеси в межтрубное пространство коаксиального смесителя, установленного на верхнем корпусе реактора. Далее подвод паровоздушной смеси в центральную трубу, а также подвод...
Тип: Изобретение
Номер охранного документа: 0002674971
Дата охранного документа: 13.12.2018
29.03.2019
№219.016.f520

Способ преобразования энергии

Способ преобразования тепловой энергии в механическую, в котором в замкнутом цикле с помощью тепловой энергии проводят нагрев и испарение рабочего тела, которое подают затем на расширение в турбину. После турбины рабочее тело сорбируют в сорбенте, конденсируют и нагнетают на повторный нагрев и...
Тип: Изобретение
Номер охранного документа: 0002425230
Дата охранного документа: 27.07.2011
18.05.2019
№219.017.5a84

Способ получения метановодородной смеси

Изобретение относится к области химии и может быть использовано для получения метановодородной смеси, содержащей H и СН, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, для переработки углеводородных газов, а также в хемотермических...
Тип: Изобретение
Номер охранного документа: 0002438969
Дата охранного документа: 10.01.2012
18.05.2019
№219.017.5a88

Способ и устройство локализации расплава активной зоны ядерного реактора

Изобретение относится к системам локализации аварии на АЭС для улавливания компонентов активной зоны ядерного реактора и их обломков из разрушенного корпуса. Способ локализации расплава включает в себя улавливание, выдерживание и охлаждение расплава в резервуаре, расположенном под реактором....
Тип: Изобретение
Номер охранного документа: 0002432628
Дата охранного документа: 27.10.2011
18.05.2019
№219.017.5ad7

Способ облучения минералов

Изобретение относится преимущественно к радиационным методам обработки ювелирных минералов для повышения их ювелирной ценности. Для этого в способе облучения минералов в нейтронном потоке реактора в контейнере предложено в процессе облучения облучаемые минералы экранировать от тепловых и...
Тип: Изобретение
Номер охранного документа: 0002431003
Дата охранного документа: 10.10.2011
18.05.2019
№219.017.5add

Способ хемотермической передачи тепловой энергии

Изобретение относится к способам передачи энергии, преимущественно от ядерных энергетических установок и при участии хемотермических систем, например, конверсии углеродсодержащего вещества. В предложенном способе хемотермической передачи тепловой энергии осуществляют эндотермическую реакцию...
Тип: Изобретение
Номер охранного документа: 0002431208
Дата охранного документа: 10.10.2011
+ добавить свой РИД