×
10.10.2014
216.012.fa53

Результат интеллектуальной деятельности: МЕХАТРОННАЯ СИСТЕМА УПРАВЛЕНИЯ ПОВОРОТОМ БЫСТРОХОДНОЙ ГУСЕНИЧНОЙ МАШИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к системе управления поворотом быстроходных гусеничных машин (БГМ). БГМ оснащена гидромеханической трансмиссией и дифференциальным механизмом поворота с гидрообъемным приводом. Система управления поворотом состоит из объемного гидропривода, гидронасос которого кинематически через механический редуктор соединен с двигателем машины, а первый канал управления - с задающим (командным) органом управления поворотом (штурвалом), бортовой компьютер, сенсоры положения и перемещения: штурвала, педали подачи топлива, числа оборотов двигателя, номера включенной передачи, дифференциального механизма, ведомые элементы которого кинематически соединены с солнечными шестернями суммирующего планетарного ряда трансмиссии. Система управления поворотом дополнительно включает двухступенчатый планетарный редуктор, соединяющий гидромотор гидропривода с дифференциальным механизмом поворота и управляемый двумя фрикционными элементами. Достигается повышение скоростных качеств машины. 1 ил.
Основные результаты: Система управления поворотом быстроходной гусеничной машины, состоящей из объемного гидропривода, включающего гидронасос и гидромотор, гидронасос которого кинематически через механический редуктор соединен с двигателем машины, а первый канал управления - с задающим (командным) органом управления поворотом (штурвалом), а второй канал - с бортовым компьютером, со входом которого соединены сенсоры положения и перемещения: штурвала, педали топлива, числа оборотов двигателя, номера включенной передачи, дифференциального механизма, ведомые элементы которого кинематически соединены с солнечными шестернями суммирующего планетарного ряда трансмиссии, отличающаяся тем, что механический привод от гидромотора к дифференциальному механизму осуществляется через двухступенчатый планетарный редуктор, состоящий из водила, солнечной шестерни и эпицикла, управляемый двумя фрикционными элементами, а управляемые клапана серводвигателей фрикционных элементов электрически соединены с бортовым компьютером информационно-измерительной управляющей системой трансмиссии (ИИУСТ).

Изобретение относится к области транспортного машиностроения и может быть использовано при синтезе систем управления поворотом быстроходных гусеничных машин (БГМ), оснащенных гидромеханической трансмиссией (ГМТ) и дифференциальным механизмом поворота с гидрообъемным приводом.

Известна система управления поворотом БМП Marder (Бурцев С.Е. "Основы применения гидрообъемных вариантов типовых трансмиссий", 1983 г. Изд-во Киевское ВТИУ рис. 3.41, стр. 200), которая содержит гидропривод, включающий гидронасос, кинематически через редуктор соединенный с двигателем, а гидромотор соединен с дифференциальным механизмом, ведомые элементы которого соединены с солнечными шестернями суммирующих планетарных рядов трансмиссий. Параллельно гидроприводу включена гидромуфта с регулируемым в процессе поворота наполнением, это обеспечивает высокую управляемость движения гусеничной машины, в том числе при входе в поворот и в процессе движения в повороте. Основным недостатком этой системы является недостаточное быстродействие, особенно при выходе из поворота, большая длительность переходных процессов, приводящая к режиму эволюционного движения.

Наиболее близкой по технической сути и достигаемому результату является система управления поворотом БМП-3 (Боевая машина пехоты БМП-3. Руководство по эксплуатации. 4.1. Техническое описание. - Ростов-на-Дону: Изд-во ООО БелРусь, 2010 г. - рис. 6.6, стр. 295, рис. 7.5, стр. 327-329), которая содержит управляемый командным органом (штурвалом) гидрообъемный привод, ведущий вал гидронасоса которого соединен с двигателем, а ведомый вал гидромотора соединен с валом дифференциального механизма поворота. На валу расположены шестерни, кинематически соединенные с солнечными шестернями СПР одного борта БГМ через промежуточную шестерню, а второго борта - непосредственно.

Водитель, воздействуя посредством приводов управления на гидропривод, изменяет режим его работы и тем самым изменяет направление движения машины. При этом контроль за поведением машины осуществляет водитель. Для компенсации возникающих отклонений траектории водитель воздействует на органы управления, пытаясь реализовать требуемую траекторию движения с необходимой для безопасности точностью. Однако вследствие ограниченности психофизиологических свойств водителя, его утомляемости в процессе длительного движения принятые решения и реализуемое им управляющее воздействие характеризуются большим количеством ошибок. В связи с этим, в ряде технических решений предложено ввести систему дополнительного автоматического управления наклонной шайбой управления насоса гидропривода. Для этого в систему управления дополнительно включается бортовой компьютер, сенсоры положения и перемещения штурвала, педали подачи топлива, числа оборотов двигателя, номера включенной передачи, а также гироскопического датчика угловой скорости, соединенного с бортовым компьютером. При отклонении параметров траектории, организованная обратная связь управления наклонной шайбой насоса ГОП отрабатывает разность между управляющим воздействием и управляемым параметром, подавая сигнал на второй канал (электронный) управления гидронасосом (Держанский В.Б., Тараторкин И.А. "Прогнозирование динамической нагруженности трансмиссий транспортных машин" - Курган: Изд-во Курганского гос. ун-та, 2008 г., рис. 3.19, стр. 145).

Основной недостаток этой системы состоит в том, что жесткая кинематическая связь солнечной шестерни суммирующего ряда через гидропривод с двигателем приводит к тому, что в такой системе угловая скорость поворота гусеничной машины зависит не только от угла поворота штурвала, но и от частоты вращения вала двигателя (положение педали подачи топлива). При движении гусеничной машины на высших передачах на твердых дорогах с незначительным сопротивлением повороту угловая скорость является функцией двух управлений - угла поворота штурвала и педали подачи топлива, не зависит от номера включенной передачи. Передаточные числа определяются из условия движения без бокового заноса на грунтах с высокими сцепными свойствами на максимальном скоростном режиме. При этом расчетная угловая скорость поворота принимается равной 1 рад/с. Это обеспечивает высокие скоростные качества машины на дорогах с интенсивным изменением кривизны. Однако при движении машины со скоростью ниже максимальной, при вращении вала двигателя на режиме максимального момента угловая скорость поворота снижается в 1,5…2 раза и может быть недостаточной. Для вписывания в требуемую траекторию при движении по окружности с радиусом 20 м по сухой бетонной дороге со скоростью, предельной по заносу, равной 12,6 м/с, угловая скорость должна составлять 0,63 рад/с. Если двигатель работает на режиме максимального момента, то расчетная угловая скорость составляет 0,5 рад/с. При юзе и буксовании гусениц фактическая угловая скорость поворота еще меньше и не превышает 0,33…0,38 рад/с (принято, что на установившемся режиме коэффициент буксования гусениц определяется отношением длины опорной поверхности к ширине колеи). Следовательно, передаточное число привода дифференциального механизма от гидромотора ГОП должно быть регулируемым для обеспечения необходимой угловой скорости поворота машины при работе двигателя не на максимальной угловой скорости.

Для устранения основного недостатка системы управления поворотом, состоящей из объемного гидропривода, включающего гидронасос и гидромотор, гидронасос которого кинематически через механический редуктор соединен с двигателем машины, а первый канал управления - с задающим (командным) органом управления поворотом (штурвалом), бортовой компьютер, сенсоры положения и перемещения: αшт штурвала, αпт педали подачи топлива, числа оборотов двигателя, номера включенной передачи, дифференциального механизма, ведомые элементы которого кинематически соединены с солнечными шестернями суммирующего планетарного ряда трансмиссии, дополнительно вводится двухступенчатый планетарный редуктор, соединяющий гидромотор гидропривода с дифференциальным механизмом поворота и управляемый двумя фрикционными элементами.

Схема предложенной системы приведена на фиг.1. Система управления состоит из объемного гидропривода - 1, включающего управляемый гидронасос - 2 с двумя каналами управления и гидромотор - 3. Гидропривод - 1 кинематически через механический редуктор - 4 соединен с двигателем машины - 5. Первый канал управления гидропривода - 1 соединен с задающим (командным) органом управления поворотом - 6 (штурвалом). С бортовым компьютером соединены сенсоры положения и перемещения штурвала - 8 (αшт), педали подачи топлива - 9 (αпт), частоты вращения вала двигателя - 10 (nд) и номера включенной передачи - 11 (mj). Ведомые элементы дифференциального механизма - 12 кинематически соединены с солнечными шестернями 13 и 14 суммирующих планетарных рядов (СПР). Механический привод от гидромотора - 3 к дифференциальному механизму - 12 осуществляется через двухступенчатый планетарный редуктор - 15. Редуктор - 15 состоит из водила - 16, солнечной шестерни - 17 и эпицикла -18 и управляется двумя фрикционными элементами через серводвигатели 19 и 20. Серводвигатели гидравлически соединены с управляемыми клапанами - 21, 22, которые соединены с бортовым компьютером - 7.

Работает предлагаемая система следующим образом. Включение системы происходит при движении БГМ с большой скоростью на высоких передачах (υ>35 км/ч). Водитель, анализируя характер изменения траектории дороги и прогнозируя реакцию машины на управляемое воздействие, при отклонении дороги от выбранного ранее направления движения создает в соответствии с навыками вождения упреждающее управляющее воздействие - поворачивает штурвал 6 на некоторый угол αшт. Соответствующий сигнал сенсора 6, как и положение педали подачи топлива αпт 9, частоты вращения вала двигателя nд 10 и номера включенной передачи mj 11 поступают в бортовой компьютер 7. На основе этих сигналов определяется параметр управляемого движения: расчетная угловая скорость поворота ωpшт, αпт). Если движение машины осуществляется на одной из высших передач и значение расчетной угловой скорости меньше 0,75…0,80 максимально возможной, то соответствующий сигнал бортового компьютера 7 поступает на вход пропорционального клапана 21 и 22 клапанной коробки, и серводвигатели 19 и 20 осуществляют выключение фрикциона и включение тормоза дополнительно введенного редуктора 15. Солнечная шестерня - 17 при этом останавливается, и тем самым происходит снижение передаточного числа дополнительно введенного редуктора, а угловая скорость его эпицикла - 18 возрастает. Благодаря этому возрастает и угловая скорость солнечных шестерней 13 и 14 суммирующих планетарных рядов, соответственно, и угловая скорость поворота машины.

Эффективность предложенного решения заключается в повышении степени реализации потенциальных скоростных качеств машины за счет возможности поворота гусеничной машины с высокой угловой скоростью, то есть - вписывание в заданную траекторию без дополнительного переключения передач в трансмиссии машины. Это снижает требуемый уровень квалификации водителя и степень его утомляемости.

Система управления поворотом быстроходной гусеничной машины, состоящей из объемного гидропривода, включающего гидронасос и гидромотор, гидронасос которого кинематически через механический редуктор соединен с двигателем машины, а первый канал управления - с задающим (командным) органом управления поворотом (штурвалом), а второй канал - с бортовым компьютером, со входом которого соединены сенсоры положения и перемещения: штурвала, педали топлива, числа оборотов двигателя, номера включенной передачи, дифференциального механизма, ведомые элементы которого кинематически соединены с солнечными шестернями суммирующего планетарного ряда трансмиссии, отличающаяся тем, что механический привод от гидромотора к дифференциальному механизму осуществляется через двухступенчатый планетарный редуктор, состоящий из водила, солнечной шестерни и эпицикла, управляемый двумя фрикционными элементами, а управляемые клапана серводвигателей фрикционных элементов электрически соединены с бортовым компьютером информационно-измерительной управляющей системой трансмиссии (ИИУСТ).
МЕХАТРОННАЯ СИСТЕМА УПРАВЛЕНИЯ ПОВОРОТОМ БЫСТРОХОДНОЙ ГУСЕНИЧНОЙ МАШИНЫ
Источник поступления информации: Роспатент

Показаны записи 61-61 из 61.
21.05.2020
№220.018.1f59

Планетарная коробка передач 10r4 со сдвоенным сцеплением

Изобретение относится к области машиностроения. Коробка передач содержит трехзвенный планетарный механизм (ПМ). К корпусу коробки присоединен корпус сдвоенного сцепления, в опорах корпусов и стенок соосно установлены валы: входной, первичный и привода солнечной шестерни (СШ). В корпусе...
Тип: Изобретение
Номер охранного документа: 0002721229
Дата охранного документа: 18.05.2020
Показаны записи 71-80 из 80.
25.08.2017
№217.015.bfb7

Способ формообразования зубчатого венца

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления зубчатых венцов с внутренними зубьями, с зубьями нестандартного профиля, а также некруглых зубчатых колес. Используют полосу шириной 0,3-3 высоты зуба изготавливаемого зубчатого венца и толщиной, не...
Тип: Изобретение
Номер охранного документа: 0002617187
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c1bc

Зубчатая безводильная планетарная передача

Изобретение относится к машиностроению, а именно к механическим передачам. Зубчатая безводильная планетарная передача содержит центральное зубчатое колесо (1) с внутренними зубьями. В данной конструкции оно является неподвижным. Остальные зубчатые колеса (2, 3, 4, 5) - сателлиты. Они имеют...
Тип: Изобретение
Номер охранного документа: 0002617887
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c289

Фрикционная планетарная передача

Изобретение относится к машиностроению, а именно механическим передачам. Фрикционная планетарная передача содержит кольцо с внутренней рабочей поверхностью. В данной конструкции оно является неподвижным. Остальные катки (2), (3), (4), (5) фрикционной передачи - сателлиты. Они имеют внешнюю...
Тип: Изобретение
Номер охранного документа: 0002617900
Дата охранного документа: 28.04.2017
20.01.2018
№218.016.13d1

Способ получения "суперсплава" на основе титана, алюминия, железа, хрома, меди и кремния из водяной суспензии частиц, содержащей соединения этих элементов руды, и устройство для его осуществления

Группа изобретений относится к получению суперсплава, состоящего из титана, алюминия, железа, хрома, меди и кремния, из водной суспензии частиц руд, содержащих соединения титана, алюминия, железа, хрома, меди и кремния. Способ включает генерацию магнитных полей, накладываемых на порции...
Тип: Изобретение
Номер охранного документа: 0002634562
Дата охранного документа: 31.10.2017
04.04.2018
№218.016.325d

Мехатронная система управления движением быстроходной гусеничной машины

Изобретение относится к области транспортного машиностроения. Мехатронная система управления движением быстроходной гусеничной машины содержит дизельный двигатель со всережимным регулятором, входной редуктор, соединяющий двигатель с гидромеханической трансмиссией, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002645487
Дата охранного документа: 21.02.2018
29.08.2018
№218.016.807c

Способ определения требуемого поворачивающего момента системы управления поворотом гусеничной машины

Изобретение относится к области транспортного машиностроения и может быть использовано при проектировании систем управления поворотом, а также при исследовании динамики управляемого движения транспортных гусеничных машин. Способ определения поворачивающего момента, создаваемого системой...
Тип: Изобретение
Номер охранного документа: 0002665159
Дата охранного документа: 28.08.2018
08.02.2020
№220.018.0026

Система дистанционного телеметрического измерения коэффициента сопротивления уводу шин опорных катков гусеничных машин

Изобретение относится к области транспортного машиностроения, может быть использовано при экспериментальном исследовании динамики управляемого движения и при создании систем управления движением роботизированным комплексом на базе гусеничных машин, оснащенных спутниковой навигационной системой....
Тип: Изобретение
Номер охранного документа: 0002713688
Дата охранного документа: 06.02.2020
02.08.2020
№220.018.3bae

Способ исключения резонансных режимов в фрикционных дисках гидромеханической трансмиссии транспортной машины

Изобретение относится к области машиностроения. Определяют спектр собственных частот диска и спектр возмущений, формируемых системой. Идентифицируют параметры расчетной схемы системы. Рассчитывают спектральную плотность процесса возбуждаемых в нелинейной системе колебаний. Математическую модель...
Тип: Изобретение
Номер охранного документа: 0002728584
Дата охранного документа: 30.07.2020
20.04.2023
№223.018.4b72

Способ расчетно-экспериментального определения динамического момента в энергосиловом блоке транспортной машины

Изобретение относится к транспортному машиностроению. Способ расчетно-экспериментального определения динамического момента в энергосиловом блоке транспортной машины заключается в определении действующего момента двигателя по сигналам датчиков частоты вращения вала двигателя и положения органа...
Тип: Изобретение
Номер охранного документа: 0002767210
Дата охранного документа: 16.03.2022
27.05.2023
№223.018.70ab

Способ гашения низкочастотных колебаний в трансмиссии транспортной машины

Изобретение относится к способу гашения низкочастотных колебаний в трансмиссии транспортной машины на стадии после кинематического выравнивания скоростей ведущих и ведомых частей. Способ заключается в создании противофазного управляющего воздействия на собственной частоте динамической системы,...
Тип: Изобретение
Номер охранного документа: 0002735455
Дата охранного документа: 02.11.2020
+ добавить свой РИД