×
27.09.2014
216.012.f75f

Результат интеллектуальной деятельности: СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА

Вид РИД

Изобретение

Аннотация: Изобретение относится к дендрометрии. Способ включает выбор пробной полосы леса поперек оврага или холма с расположенными вдоль нее деревьями. У каждой березы на пробной полосе измеряют максимальную высоту комля от корневой шейки ствола до поверхности почвы на нижней стороне по склону оврага или холма и угол местного склона поперек общего склона места произрастания дерева. Для анализа роста и развития берез, произрастающих на склоне, по множеству измеренных параметров высоты комля берез и угла местного склона мест их произрастания статистическим моделированием выявляют взаимосвязь между высотой комля берез и углом местного склона мест их произрастания. Такая технология позволит расширить функциональные возможности при борьбе с водной эрозией. 1 з.п. ф-лы, 6 ил., 3 табл.

Изобретение относится к дендрометрии при изучении влияния склона оврагов и холмов на рост и развитие комлевой части березовых деревьев с учетом места каждой березы на этом склоне, разработке мероприятий по защите земельных участков около оврагов и холмов от водной эрозии и может быть для разработки экологических и климатических технологий использовано, а также при дендроэкологическом мониторинге за развитием овражной сети и рационализации землепользования с учетом изменений формы комлевой части растущих на склоне оврага или холма березовых деревьев.

Известен способ анализа комля древесного ствола по патенту №2254707, включающий разметку ствола на секции кратной или некратной длины в зависимости от расположения неровностей ствола с измерением соответствующих расстояний от корневой шейки, секции некратной длины размечают на неровностях комлевой части ствола, по крайней мере, дважды в трех точках неровности, а измерения вдоль и поперек ствола по секциям выполняют гибкой мерной лентой, причем поперек ствола измеряют гибкой мерной лентой периметр сечения ствола.

Недостатком является то, что измерения выполняют у деревьев, растущих на ровной местности. При этом известный способ не позволяет учитывать влияние периметров комля ниже корневой шейки деревьев. Причем березы могут произрастать на склоне оврага, сильно изменяя высоту корневой шейки от точки склона посередине ствола.

Известен также способ анализа комля растущего дерева для определения поперечного профиля оврага по патенту №2416193 РФ, характеризующийся тем, что поперек оврага выбирают пробную полосу леса с расположенными вдоль нее деревьями, измеряют расстояния и общий угол склона в поперечном сечении оврага между серединами диаметров корневой шейки смежных вдоль пробной полосы деревьев.

Недостатком также является отсутствие измерений периметра комлевой части дерева ниже корневой шейки, что не позволяет изучать влияние склона оврага или холма на комлевую часть, начиная на стволе от высоты 1,3 м над корневой шейкой до поверхности почвы на склоне оврага или холма. Кроме того, в дендрометрии до сих пор не выделены те лимитирующие факторы комля, которые влияют на параметры места произрастания дерева.

Технический результат - расширение функциональных возможностей анализа комлевой части деревьев, произрастающих на склоне оврага или холма, а также повышение точности измерений березы ниже корневой шейки, начиная от стандартной высоты ствола в 1,3 м над корневой шейкой дерева до поверхности склона оврага. По другим породам нужны исследования.

Этот технический результат достигается тем, что способ анализа комля и места произрастания березы на склоне оврага, характеризующийся тем, что поперек оврага выбирают пробную полосу леса с расположенными вдоль нее деревьями, измеряют расстояния и общий угол склона в поперечном сечении оврага между серединами диаметров корневой шейки смежных вдоль пробной полосы деревьев, отличающийся тем, что у каждой березы на пробной полосе вдоль оврага дополнительно измеряют максимальную высоту комля от корневой шейки ствола до поверхности почвы на нижней стороне по склону у комля, а по множеству измеренных берез выполняют статистическое моделирование идентификацией многочленной однофакторной математической модели.

По множеству комлей измеренных берез и мест их произрастания выполняют статистическое моделирование идентификацией многочленной однофакторной математической модели вида:

где φ - угол местного склона для места произрастания, град;

φ1 - первая детерминированная составляющая модели в виде устойчивого закона экспоненциального роста угла местного склона в зависимости от максимальной высоты комля у множества измеренных берез, град;

φ2 - вторая детерминированная составляющая модели в виде устойчивого биотехнического закона, показывающего стрессовое возбуждение мест произрастания популяции берез (по-видимому, при адаптации этого места произрастания к водной эрозии почвы на склоне оврага или холма) по ускоренному увеличению угла местного склона на каком-то интервале изменения максимальной высоты комля деревьев в популяции берез, град;

y1 - волновые составляющие модели, показывающие колебательное возмущение места произрастания по углу местного склона в зависимости от максимальной высоты комля деревьев в популяции берез, град;

i - номер волновой составляющей в виде асимметричного вейвлет-сигнала о колебательном взаимодействии комля популяции берез с местами их произрастания, шт.;

m - общее количество волновых функций, зависящее от вычислительной возможности программной среды (CyrveExpert дает только две дополнительные составляющие, то есть только до 19 параметров модели) и погрешности измерений (измерение угла в один градус и высоты в один сантиметр дали возможность получить дополнительно и пятую составляющую модели или же третью волновую составляющую);

hmax - максимальная высота пня со стороны комля ниже по склону оврага или холма, см;

a1…a7, b1…b8 - параметры статистической модели, численные значения которых выявляются в программной среде при обработке одного примера в виде массива исходных данных измерений (максимальная высота комля и угол местного склона места произрастания) по всем березам из популяции.

Сущность технического решения заключается в том, что наиболее часто на склонах оврагов в лесостепной зоне России произрастают березы естественного происхождения. Они закрепляют овраги от водной эрозии, и происходит симбиоз между березняком и почвой на склоне оврага: березы своими корнями защищают почву от смыва, а почва наращивает свою плодородие, позволяя расти березам продуктивно без потери питательных веществ.

Сущность технического решения заключается также в том, что именно береза обладает замечательным свойством стать древесным растением для климатических и экологических технологий по изменению местного климата лесостепной зоны (стабилизируя температуру и водный баланс в почве в течение года) на земельных участках, подверженных водной эрозии, и предотвращает дальнейшее развитие овражной сети.

Сущность технического решения заключается также и в том, что в некоторых природно-антропогенных условиях частично восстанавливается и полноводность и регулярность водотока в течение года на дне оврага.

Сущность технического решения заключается также и в том, что факторный анализ множества измеренных параметров комля берез и места каждой березы по углу местного склона на общем склоне оврага показал наибольшую тесноту факторной связи между углом местного склона места произрастания каждой из 30 измеренных берез и максимальной высотой комля от поверхности почвы на нижней стороне по склону у комля березы до корневой шейки ствола этой же березы.

Положительный эффект достигается тем, что выявление среднестатистической закономерности изменения угла местного склона места произрастания берез на пробной площади, заложенной на склоне оврага или холма, в зависимости от максимальной высоты комля, начиная от корневой шейки до самой нижней точки комля на нижней стороне березы по склону, позволяет проводить экологический мониторинг за состоянием и развитием самого оврага на участке с изучаемым березняком. Это позволит следить за укреплением склонов оврагов и холмов от водной эрозии в ходе роста и развития посаженных берез. Такой мониторинг, по мере накопления опыта и данных измерений, дает возможность рекомендовать экологические и климатические технологии вначале на территориях лесостепной зоны России, а затем и в степной зоне. Это, по опыту США (с 1960 года) и Китая (с 1970 года) значительно повысит урожайность зерновых культур на полях около оврагов и холмов, а также повысит продуктивность травяного покрова пойменных лугов на склонах оврагов со ставшими полноводными ручейками, а также на склонах холмов и берегов малых рек и их притоков.

Новизна технического решения заключается в том, что впервые измерения проводят ниже корневой шейки ствола растущего дерева, что позволит в будущем подойти к поиску научно-технических решений и по изучению изменений формы комлевой части дерева. Кроме того, научная новизна заключается в том, что впервые получена математическая закономерность влияния максимальной высоты комля берез на изменение угла местного склона на месте произрастания каждой березы.

Предлагаемое техническое решение обладает существенными признаками, новизной и значительным положительным эффектом. Материалов, порочащих новизну технического решения, нами не обнаружено. Поэтому предлагаемое изобретение становится научно-техническим решением, полученным на основе выявления фундаментальной закономерности влияния параметра комля березы на параметр места ее произрастания.

На фиг.1 приведена схема измерения параметров комля и места произрастания березы: φ - угол местного склона для места произрастания; hmax - максимальная высота пня со стороны комля ниже по склону оврага или холма; на фиг.2 показан график детерминированной модели φ = ƒ (hmах) с двумя устойчивыми законами; на фиг.3 - показан график третьей составляющей математической модели в виде волновой функции; на фиг.4 - то же на фиг.3 четвертой составляющей; на фиг.5 дан график общей математической (статистической) модели φ = ƒ (hmax) с четырьмя составляющими; на фиг.6 показан график следующей за четырехчленным уравнением колебательной закономерности в виде резко возмущающегося колебания.

Способ анализа комля и места произрастания березы на склоне оврага выполняется следующими действиями.

Вначале выбирают по прототипу пробную площадь с березами, в виде полосы на склоне вдоль оврага, а также холма, малой реки, озера или другого элемента рельефа или ландшафта. На этой полосе выбирают учетные деревья для измерений. Для измерений максимальной высоты комля и угла местного склона в простейшем случае применяют гибкую мерную ленту и транспортир с отвесом на гибкой нитке.

По множеству комлей измеренных берез и мест их произрастания выполняют статистическое моделирование идентификацией многочленной однофакторной математической модели вида:

,

,

,

где φ - угол местного склона для места произрастания, град;

φ1 - первая детерминированная составляющая модели в виде устойчивого закона экспоненциального роста угла местного склона в зависимости от максимальной высоты комля у множества измеренных берез, град;

φ2 - вторая детерминированная составляющая модели в виде устойчивого биотехнического закона, показывающего стрессовое возбуждение мест произрастания популяции берез (по-видимому, при адаптации этого места произрастания к водной эрозии почвы на склоне оврага или холма) по ускоренному увеличению угла местного склона на каком-то интервале изменения максимальной высоты комля деревьев в популяции берез, град;

yi - волновые составляющие модели, показывающие колебательное

возмущение места произрастания по углу местного склона в зависимости от максимальной высоты комля деревьев в популяции берез, град;

i - номер волновой составляющей в виде асимметричного вейвлет-сигнала о колебательном взаимодействии комля популяции берез с местами их произрастания, шт.;

m - общее количество волновых функций, зависящее от вычислительной возможности программной среды (CyrveExpert дает только две дополнительные составляющие, то есть только до 19 параметров модели) и погрешности измерений (измерение угла в один градус и высоты в один сантиметр дали возможность получить дополнительно и пятую составляющую модели или же третью волновую составляющую);

hmax - максимальная высота пня со стороны комля ниже по склону оврага или холма, см;

a1…a7, b1…b8 - параметры статистической модели, численные значения которых выявляются в программной среде при обработке одного примера в виде массива исходных данных измерений (максимальная высота комля и угол местного склона места произрастания) по всем березам из популяции.

Способ анализа комля и места произрастания березы на склоне оврага, например, с ручейком на дне оврага, имеющего на склоне березняк естественного происхождения, реализуется следующим образом.

У каждой березы на пробной полосе вдоль оврага дополнительно измеряют максимальную высоту комля от корневой шейки ствола до поверхности почвы, на нижней стороне по склону у комля, а по множеству измеренных берез выполняют статистическое моделирование идентификацией многочленной однофакторной математической модели.

По множеству комлей измеренных берез и мест их произрастания выполняют статистическое моделирование идентификацией многочленной однофакторной математической модели вида:

,

где φ - угол местного склона для места произрастания, град;

φ1 - первая детерминированная составляющая модели в виде устойчивого закона экспоненциального роста угла местного склона в зависимости от максимальной высоты комля у множества измеренных берез, град;

φ2 - вторая детерминированная составляющая модели в виде устойчивого биотехнического закона, показывающего стрессовое возбуждение мест произрастания популяции берез (по-видимому, при адаптации этого места произрастания к водной эрозии почвы на склоне оврага или холма) по ускоренному увеличению угла местного склона на каком-то интервале изменения максимальной высоты комля деревьев в популяции берез, град;

yi - волновые составляющие модели, показывающие колебательное возмущение места произрастания по углу местного склона в зависимости от максимальной высоты комля деревьев в популяции берез, град;

i - номер волновой составляющей в виде асимметричного вейвлет-сигнала о колебательном взаимодействии комля популяции берез с местами их произрастания, шт.;

m - общее количество волновых функций, зависящее от вычислительной возможности программной среды (CyrveExpert дает только две дополнительные составляющие, то есть только до 19 параметров модели) и погрешности измерений (измерение угла в один градус и высоты в один сантиметр дали возможность получить дополнительно и пятую составляющую модели или же третью волновую составляющую);

hmax - максимальная высота пня со стороны комля ниже по склону оврага или холма, см;

а1…а7, b1…b8 - параметры статистической модели, численные значения которых выявляются в программной среде при обработке одного примера в виде массива исходных данных измерений (максимальная высота комля и угол местного склона места произрастания) по всем березам из популяции.

Пример

Для снижения линейной эрозии почвы оврагами применяют растения. Цель исследования - изучение формы комля деревьев, растущих в овраге, для выявления закономерностей взаимодействия между древесными растениями и склоном. Объектом исследования был лесной овраг около деревни Ямолино Горномарийского района Республики Марий Эл. Эксперименты были проведены летом 2011 года.

Методика измерения комля выполняется следующим образом (фиг.1).

Сначала определяли участок оврага по методике, изложенной в патенте №2416193 РФ по прототипу, на склоне которого растут деревья. Выбрали учетные деревья для измерений в количестве 30 штук. Для измерений применяли гибкую мерную ленту и транспортир с отвесом.

После факторного анализа 14 измеренных параметров комля и места произрастания берез оказалось, что имеются сильная факторная связь влияния максимальной высоты комля от корневой шейки ствола до поверхности почвы на нижней стороне по склону на угол местного склона места произрастания деревьев. При этом обратное влияние угла местного склона на максимальную высоту комля березы по коэффициенту корреляции составляет менее 0,3. Поэтому прямое влияние φƒ(hmax) является высокоадекватным.

По принципу «от простого к сложному» можно предложить (табл.1) «кирпичики» для построения, по ходу структурно-параметрической идентификации биотехнического закона, любой статистической модели.

Таблица 1
Математические конструкты для построения статистической модели
Фрагменты без предыстории изучаемого явления или процесса Фрагменты с предысторией изучаемого явления или процесса
y = ax - закон линейного роста или спада (при отрицательном знаке перед правой стороной приведенной формулы) y = а - закон не влияния принятой переменной на показатель, который имеет предысторию значений
y = ахb - закон показательного роста (закон показательной гибели y = ах-b) не является устойчивым, из-за бесконечности при нулевом значении объясняющей переменной y = а ехр(±сх) - закон Лапласа (Ципфа в биологии, Парето в экономике, Мандельброта в физике) экспоненциального роста или гибели, относительно которого создан метод операторных исчислений
y = axbexp(-ct) биотехнический закон в упрощенной форме y = a exp(±cxd) - закон экспоненциального роста или гибели, по автору статьи
y = ахb exp(-cxd) - биотехнический закон, предложенный проф. П.М. Мазуркиным

В таблице 1 показаны все «нормальные» фрагменты, у которых впереди могут быть расположены оперативные константы, в виде знаков «+» или «-». Все шесть устойчивых законов распределения являются частными случаями биотехнического закона, показанного внизу таблицы 1.

Как известно из классической математической статистики, грубая классификация уровней коэффициента корреляции следующая:

а) до 0,3 - нет связи между факторами (то есть можно не учитывать эти связи, хотя они в других условиях проявления могут оказаться даже сильными по факторной связи);

б) от 0,3 до 0,7 - есть связь между двумя факторами, но она считается достаточно слабой, чтобы ее учитывать в практических выводах, однако дополнение волновыми возмущениями может перевести в сильные связи;

в) выше 0,7 - имеется сильная связь между переменными факторами даже при не волновых биотехнических закономерностях.

По множеству комлей измеренных берез и мест их произрастания выполнили статистическое моделирование идентификацией многочленной однофакторной математической модели общего вида:

где φ - угол местного склона для места произрастания, град;

φ1 - первая детерминированная составляющая модели в виде устойчивого закона экспоненциального роста угла местного склона в зависимости от максимальной высоты комля у множества измеренных берез, град;

φ2 - вторая детерминированная составляющая модели в виде устойчивого биотехнического закона, показывающего стрессовое возбуждение мест произрастания популяции берез (по-видимому, при адаптации этого места произрастания к водной эрозии почвы на склоне оврага или холма) по ускоренному увеличению угла местного склона на каком-то интервале изменения максимальной высоты комля деревьев в популяции берез, град;

yi - волновые составляющие модели, показывающие колебательное возмущение места произрастания по углу местного склона в зависимости от максимальной высоты комля деревьев в популяции берез, град;

i - номер волновой составляющей в виде асимметричного вейвлет-сигнала о колебательном взаимодействии комля популяции берез с местами их произрастания, шт.;

m - общее количество волновых функций, зависящее от вычислительной возможности программной среды (CyrveExpert дает только две дополнительные составляющие, то есть только до 19 параметров модели) и погрешности измерений (измерение угла в один градус и высоты в один сантиметр дали возможность получить дополнительно и пятую составляющую модели или же третью волновую составляющую);

hmах - максимальная высота пня со стороны комля ниже по склону оврага или холма, см;

а1…а7, b1…b8 - параметры статистические модели, численные значения которых выявляются в программной среде.

Исходные данные для моделирования приведены в таблице 2.

Примечание. Береза №6 резко отклоняется по значению угла местного склона, поэтому она была исключена из статистической выборки для моделирования.

Вначале получили тренд, то есть тенденцию (фиг.2), с детерминированными составляющими в виде формулы

φ = 13,62968ехр(1,61495·10-5 hmax 2,02456)+

+3,63583·10-96hmax57,87164exp(-0,0096015hmax1,84610).

Затем наращиванием статистической модели получили две волновые составляющие (фиг 3 и фиг.4), а после их объединения получилась конкретная модель вида:

φ=φ1φ234,

φ1 = 13,31534exp(2,35264·10-5hmax1,94375),

φ2 = 4,49196·10-96hmax57,99893exp(-0,0097477hmax1,84784).

A1 = 0,52162hmax0,40329exp(-0,11685hmax0,34888),

p1 = 11,74668-0,0022848hmax1,52715,

φ4 = A2cos(πhmax / p2+5,02174),

A2 = 2,05982,

где А1, А2 - амплитуды (половина) первого и второго колебательного возмущения угла местного склона на развитие и рост комля по максимальной высоте, измеренной ниже по склону от корневой шейки, град,

р1, р2 - полупериоды колебательного возмущения угла местного склона в зависимости от максимальной высоты комля березы, см.

Для анализа наглядней запись в матричной форме как обобщенной волновой функции. В этом случае детерминированные составляющие являются амплитудами больших волн, у которых полупериод намного превышает диапазон (интервал) изменения влияющего фактора по оси абсцисс. Тогда получается, что две составляющие детерминированной модели имеют полупериоды колебательного возмущения намного более 130 см.

В таблице 3 дана матричная запись всех пяти составляющих.

Анализ показывает, что по первой детерминированной составляющей с увеличением максимальной высоты комля березы происходит экспоненциальный рост угла местного склона места ее произрастания. По таблице 2 этот процесс является кризисным (отрицательный знак перед параметром а3i). При благоприятных условиях произрастания комли деревьев стараются выравнивать склон до горизонтального уровня.

Первая волна возмущения имеет параметр а6i = -0,0022848 и в этом случае полупериод колебания уменьшается. В итоге частота колебательного возмущения нарастает с ростом максимальной высоты комля березы. Это также становится кризисным (в экологическом осмыслении) для склона оврага. Поэтому склон оврага под изученными учетными березами может не выдержать сильных ливней.

Этот вывод подтверждает пятая составляющая (третья волна возмущения) с нарастающей по закону экспоненциального роста амплитудой. Чтобы компенсировать дальнейший рост максимальной высоты комля, стволы берез стали искривляться. Поэтому на крутых склонах трудно ожидать развитие и рост прямоствольных берез.

Таким образом, предлагаемое техническое решение основано на результатах фундаментальных исследований взаимного влияния комлевой части лесных деревьев, произрастающих как единая популяция и как микрогеотехническая система, десятилетиями на склоне оврага или холма.

Поэтому предлагаемый способ может быть применен в индикации не только лесного рельефа, но и фитоиндикации тех мест произрастания берез, расположенных на склонах оврагов и холмов, берегов малых рек и озер. Минимальное количество деревьев на одной пробной площади в виде полосы вдоль склона определяется возможностью идентификации биотехнических закономерностей и должно быть не менее 30 деревьев.


СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА
Источник поступления информации: Роспатент

Показаны записи 51-52 из 52.
20.01.2018
№218.016.10d3

Бурав для извлечения керна древесины

Изобретение относится к лесной таксации, в частности к устройствам для извлечения кернов свежей древесины из стволов. Бурав для извлечения керна древесины содержит полый цилиндрический корпус инструмента с режущей головкой и ручку для вращения инструмента с фиксатором. Ручка для вращения...
Тип: Изобретение
Номер охранного документа: 0002633791
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.18ec

Способ взятия проб почвы для агрохимического анализа по расстояниям вдоль малой реки и поперек от уреза воды

Изобретение относится к экологии и может быть использовано для агрохимического анализа. Для этого исследуемую территорию в виде координатной сетки для взятия проб почвы определяют на стороне малой реки в пределах водоохранной зоны рядом с сельхозугодиями, площадки отбора проб почвы координатной...
Тип: Изобретение
Номер охранного документа: 0002636225
Дата охранного документа: 21.11.2017
Показаны записи 111-120 из 160.
20.11.2015
№216.013.9228

Устройство для заготовки хвойной лапки

Изобретение относится к лесной промышленности и лесному хозяйству и может быть использовано для заготовки хвойной лапки непосредственно на лесосеке. Устройство содержит транспортер, очесывающий барабан с предохранительным кожухом и выходной люк. Тяговый орган транспортера выполнен в виде набора...
Тип: Изобретение
Номер охранного документа: 0002569032
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9249

Способ замера объема нефтепродукта в резервуаре

Изобретение относится к системам нефтепродуктообеспечения. Изобретение касается способа замера объема нефтепродукта в резервуаре, в котором мерной линейкой замеряют высоту нефтепродукта в резервуаре, имеющем форму цилиндра круглого горизонтально расположенного, и при известных величинах радиуса...
Тип: Изобретение
Номер охранного документа: 0002569065
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92a6

Муфта предохранительная

Изобретение относится к машиностроению и может быть использовано для передачи вращательного движения. Предохранительная муфта содержит корпус, который выполнен составным, состоящим из правой и левой половин, соединенных между собой посредством болтового соединения; ведомый вал, жестко...
Тип: Изобретение
Номер охранного документа: 0002569160
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92ae

Муфта предохранительная

Изобретение относится к области машиностроения и может быть использовано в устройствах для передачи вращательного движения с ведущего вала на ведомый с одновременной защитой механизмов от перегрузок, превышающих расчетные. Муфта содержит корпус, соединенный с концами ведущего и ведомого валов....
Тип: Изобретение
Номер охранного документа: 0002569168
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.93ca

Водный велосипед

Изобретение относится к малогабаритным плавучим транспортным средствам для отдыха на воде, спортивных соревнований и в качестве тренажера. Водный велосипед включает плавучий корпус, подводные крылья, педали и руль. Корпус велосипеда выполнен в виде совокупности трех корпусов, которые закреплены...
Тип: Изобретение
Номер охранного документа: 0002569453
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.94f1

Способ сравнительной индикации загрязненности воздуха по флуктуирующей асимметрии листьев березы

Изобретение относится экологии и может быть использовано для сравнительной индикации загрязненности воздуха по флуктуирующей асимметрии листьев березы. Способ включает взятие листьев от учетных деревьев березы, растущих в одинаковых экологических условиях местопроизрастания, причем все листья,...
Тип: Изобретение
Номер охранного документа: 0002569748
Дата охранного документа: 27.11.2015
10.01.2016
№216.013.9ee7

Ручное устройство для образования лунок под посадку контейнеризированных сеянцев

Изобретение относится к области лесного хозяйства, преимущественно к технологии создания лесных культур сеянцами с закрытой корневой системой, выращенных в контейнерах. Сущность изобретения заключается в том, что к корпусу тележки, на платформе которой установлен ящик с сеянцами, в нижней ее...
Тип: Изобретение
Номер охранного документа: 0002572316
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3bd

Стыковое соединение железобетонных плит сборно-разборных дорожных покрытий

Изобретение относится к сборно-разборным покрытиям автомобильных дорог. Технический результат - улучшение качества соединения дорожных плит, снижение трудоемкости работ на укладке. Стыковое устройство плиты с торцовых сторон, относительно продольной оси, снабжено пазами с шарнирно...
Тип: Изобретение
Номер охранного документа: 0002574092
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c5c3

Складной якорь

Изобретение относится к донным опорам и может быть использовано для удержания на месте маломерных судов на водохранилищах. Складной якорь содержит веретено, лапы. Веретено выполнено в виде мешка из брезентовой ткани, на теле которого в нижней его части смонтированы лапы. Лапы объединены в две...
Тип: Изобретение
Номер охранного документа: 0002578002
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c6bb

Муфта предохранительная

Изобретение относится к области машиностроения и может быть использовано для передачи вращательного движения с ведущего вала на ведомый с одновременной защитой механизмов от перегрузок, превышающих расчетные. Муфта содержит корпус, внутри которого установлена шестерня, входящая в зацепление с...
Тип: Изобретение
Номер охранного документа: 0002578626
Дата охранного документа: 27.03.2016
+ добавить свой РИД