×
27.09.2014
216.012.f6c1

Результат интеллектуальной деятельности: МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике, к магнитной гидродинамике, к электромагнитным насосам и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике. Технический результат состоит в введении возможности пропускания через рабочий канал как жидкой (электролиты, расплавы металлов), так газообразной (ионизированный газ) проводящих сред. Магнитогидродинамическое (МГД) устройство включает канал, входные и выходные патрубки, магнитную систему. Магнитная система выполнена в виде сплошного цилиндра из проводящего материала, торцы которого соединены электрическими проводами с рабочими электродами, подключенными к источнику питания. В патрубки вмонтированы рабочие электроды. В первом варианте МГД устройства внутренняя стенка канала является цилиндрической, а внешняя - конической с углом наклона α в диапазоне от 0° до 90°. В патрубки вмонтированы рабочие электроды. Во втором варианте МГД устройства внешняя и внутренняя стенки канала являются цилиндрическими, причем функцию одной пары электродов выполняют стенки канала. 2 н.п. ф-лы, 6 ил.

Изобретение относится к области магнитной гидродинамики, а именно к электромагнитным насосам, и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике.

Известен магнитогидродинамический (МГД) насос (патент РФ №2363088 С2, кл. H02K 44/02, опубл. 27.07.2009), создающий электромагнитные силы для продвижения жидкого металла от взаимодействия магнитного потока, вызванного системой возбуждения, с током, пропускаемым через канал с металлом, в насосе от внешнего источника напряжения, выполнен с числом каналов больше двух, суживающихся от периферии к центру насоса, а система возбуждения выполнена в виде постоянных магнитов, расположенных между каналами и создающих в каналах магнитные потоки, векторы индукции которых направлены по концентрическим окружностям относительно продольной оси.

Известен магнитогидродинамический насос (патент РФ №2106053 C1, кл. H02K 44/02, опубл. 27.02.1998) для перекачивания алюмоцинкового расплава, содержащий корпус с рабочим каналом и индукторами бегущего поля, причем корпус выполнен разъемным в виде двух симметричных герметизированных блоков коробчатой формы со смежными стенками, вдоль каждой из которых размещен индуктор, при этом блоки скреплены герметично, а рабочий канал образован из двух продольных пазов прямоугольного сечения, каждый из которых выполнен на наружной стороне смежной стенки блока.

Известен электромагнитный насос (патент РФ №2159001 C2, кл. H02K 44/02, опубл. 10.11.2000) для перекачивания расплавленных металлов и сплавов, выбранный в качестве прототипа, включающий в себя магнитопровод, канал, входной патрубок, снабженный вторым магнитопроводом и одним выходным патрубком, патрубки гидравлически соединены между собой под углом и к ним подведен ток, в месте соединения патрубки выполнены плоскими, их плоские участки лежат в одной плоскости и по обе стороны от места соединения, размещены между полюсами магнитопроводов, охватывающих канал с противоположных сторон.

Общими недостатками вышеперечисленных устройств является то, что эти устройства предназначены для только одной области техники, имеют обмоточную систему для создания магнитного поля. В связи с этим у них сложная конструкция и значительные габариты.

Задачей изобретения является повышение эффективности, надежности, ремонтопригодности, упрощение конструкции, снижение массогабаритных показателей насоса и расширение области его применения путем введения безобмоточной магнитной системы, а техническим результатом - введение возможности пропускания через рабочий канал как жидкой проводящей среды, например электролиты, расплавы металлов, так и газообразной проводящей среды, например ионизированный газ.

Поставленная задача решается, а технический результат по первому варианту достигается тем, что в магнитогидродинамическом устройстве, включающем в себя канал, входные и выходные патрубки, магнитную систему, в отличие от прототипа внутренняя стенка канала является цилиндрической, а внешняя стенка канала выполнена конической, в патрубки вмонтированы рабочие электроды, и магнитная система выполнена в виде сплошного цилиндра из проводящего материала, установленного внутри внутренней стенки канала и торцы которого соединены при помощи электрических проводов с рабочими электродами, подключенными к источнику питания.

Поставленная задача решается, а технический результат по второму варианту достигается тем, что в магнитогидродинамическом устройстве, включающем в себя канал, входные и выходные патрубки, магнитную систему, в отличие от прототипа внешняя и внутренняя стенки канала являются цилиндрическими, в патрубки вмонтированы рабочие электроды, причем функцию одной пары электродов выполняют стенки канала, а магнитная система выполнена в виде сплошного цилиндра из проводящего материала, установленного внутри внутренней стенки канала и торцы которого соединены при помощи электрических проводов с рабочими электродами, подключенными к источнику питания.

Существо изобретения по первому варианту поясняется чертежами.

На фиг.1 представлена конструкция магнитогидродинамического устройства, общий вид; на фиг.2 - конструкция магнитогидродинамического устройства, разрез А-А; на фиг.3 - распределение векторов электромагнитных сил в коническом участке канала магнитогидродинамического устройства.

Существо изобретения по второму варианту поясняется чертежами.

На фиг.4 представлена конструкция магнитогидродинамического устройства, продольный разрез; на фиг.5 - конструкция магнитогидродинамического устройства, разрез Б-Б; на фиг.6 - распределение векторов электромагнитных сил на участке канала магнитогидродинамического устройства.

Магнитогидродинамическое устройство по первому варианту состоит из соединенных между собой канала 1 из немагнитного материала (например, сталь 12Х15Г9НД со структурой аустенита), входного и выходного патрубков 2, 3 из прочного тепло- и электроизоляционного материала, например из керамики. Во внутренней стенке канала 1 установлен медный цилиндрический проводник 4, который зафиксирован при помощи цилиндрических втулок 5 с прорезями для вентиляции из теплоустойчивого и электроизоляционного материала, например из керамики. Внутри патрубков 2, 3 вмонтированы рабочие электроды 6, 7. В свою очередь, рабочие электроды 6 соединены с медным цилиндрическим проводником 4 при помощи электрических проводов (на фиг.1, 2 не показаны).

Технологически монтирование электродов в патрубки может быть обеспечено на стадии изготовления при помощи прессования металла и керамики.

Внешняя стенка канала выполнена конической с углом наклона α в диапазоне от 0° до 90°.

Изнутри поверхности рабочего канала 1, а также поверхности внутренней стенки канала покрыты немагнитным, электроизоляционным и термо-, износоустойчивым материалом, например мелкодисперсной керамикой.

Магнитогидродинамическое устройство по второму варианту состоит из соединенных между собой канала 1 из немагнитного материала (например, сталь 12Х15Г9НД со структурой аустенита), входного и выходного патрубков 2 из прочного тепло- и электроизоляционного материала, например из керамики. Внутри внутренней стенки канала 1 установлен медный цилиндрический проводник 3, который зафиксирован при помощи цилиндрических втулок 4 с прорезями для вентиляции из теплоустойчивого и электроизоляционного материала, например из керамики. Внутри патрубков 2 вмонтированы рабочие электроды 5, 6, 7. Рабочие электроды 5 соединены с медным цилиндрическим проводником 4 при помощи электрических проводов (на фиг.4 не показаны). В свою очередь, рабочие электроды 6 и 7 своими торцами контактируют с торцами стенок канала 1, таким образом обеспечивая между ними электрический контакт.

Внешняя и внутренняя стенки канала 1 выполнены цилиндрическими. Внутренняя поверхность внутренней стенки канала 1 покрыта немагнитным, электроизоляционным и термо-, износоустойчивым материалом, например мелкодисперсной керамикой.

Магнитогидродинамическое устройство по первому варианту работает следующим образом. При заполнении рабочего канала 1 электропроводящей жидкостью и подведении напряжения к рабочим электродам 6, 7 образуются две цепи, по которым протекают токи. Первая цепь замыкается в цилиндрическом проводнике, а вторая - через рабочий канал 1, в котором находится электропроводящая жидкость. При протекании тока в первой цепи образуется постоянное магнитное поле, силовые линии которого представляют концентрические окружности вокруг оси цилиндра. Это внешнее магнитное поле взаимодействует с током, протекающим в канале. При этом образуется электромагнитная сила f в канале, направление которой определяется согласно «правилу левой руки». Эта сила действует на весь объем жидкости в канале. В конической части канала сила f имеет две составляющие: осевая fτ и радиальная fn. Осевая составляющая fτ действует на заряженные частицы, находящиеся в электропроводящей жидкости, в осевом направлении, таким образом создавая тягу в рабочем канале, в то время как радиальная составляющая fn действует на заряженные частицы, находящиеся в электропроводящей жидкости, в радиальном направлении, таким образом сжимая электропроводящую жидкость в рабочем канале.

Проведенные расчеты показывают, что наибольшие значения осевой тяговой силы fτ наблюдаются при значениях угла α в диапазоне от 10° до 40°.

Магнитогидродинамическое устройство по второму варианту работает следующим образом. При подаче напряжений на электроды происходит замыкание двух цепей. В первой по цилиндрическому проводнику протекает ток i1, а вторая цепь замыкается по воздушному промежутку между стенками канала, образуя множественные искровые разряды (ток i2). При этом воздух в промежутке становится ионизированным и представляет собой плазму. Образуется магнитное поле с индукцией B, силовые линии которого представляют собой концентрические окружности вокруг центрального проводника. Это магнитное поле взаимодействует с образованной плазмой. При этом возникают электромагнитная сила F, направление которой определяется по «правилу левой руки». В данном случае, направление электромагнитной силы совпадает с направлением тока i1. В итоге происходит движение частиц плазмы под действием этой силы.

Магнитная ускоряющая система в обоих вариантах МГД-устройства выполнена безобмоточной, и в ней отсутствует магнитопровод, что позволяет снизить требования по термо- и электроизоляции.

Простая конструкция магнитной системы в виде цилиндрического проводника позволяет легко осуществлять ремонт магнитогидродинамического устройства.

Простая конструкция и минимальное количество составных частей магнитогидродинамического устройства позволяют повысить его надежность.

Выполнение магнитогидродинамического устройства первого варианта в смешанном виде (кондукционном и индукционном) позволяет повысить его КПД.

Возможность пропускания через рабочий канал как жидкой проводящей среды, например электролиты, расплавы металлов, так и газообразной проводящей среды, например ионизированный газ, расширяет области применения магнитогидродинамического устройства.


МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ)
МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ)
МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ)
МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ)
МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ)
МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 101-110 из 140.
27.04.2016
№216.015.37dc

Охлаждаемая рабочая перфорированная лопатка турбины

Охлаждаемая рабочая перфорированная лопатка турбины содержит перфорированную оболочку с охлаждающими отверстиями малого диаметра изогнутой формы. Средняя линия каждого из охлаждающих отверстий расположена в плоскости вдоль пера лопатки и нормальной к поверхности обвода профиля лопатки....
Тип: Изобретение
Номер охранного документа: 0002582539
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b7c

Электростатический сепаратор

Изобретение относится к системам очистки воздуха с использованием электрического поля для поляризации частиц и материала и может использоваться в системах отопления, вентиляции и кондиционирования воздуха, автономных блоках фильтров или вентиляторах, а также в промышленных системах очистки...
Тип: Изобретение
Номер охранного документа: 0002583844
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cae

Интегрированный высокотемпературный стартер-генератор и способ управления им

Изобретение относится к электротехнике, а именно к устройствам запуска авиационного двигателя и электроснабжения бортовой системы самолета. Стартер-генератор, вал ротора которого выполнен единым с валом газотурбинного двигателя, причем на валу установлены постоянные магниты с чередующимися...
Тип: Изобретение
Номер охранного документа: 0002583837
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3ec1

Способ калибровки магнитострикционных преобразователей линейных перемещений и устройство его реализации

Изобретение относится к измерительной технике и может быть применено в системах измерения линейного перемещения в заявленном устройстве и способе, реализующем указанное устройство. Сущность изобретения заключается в том, что проводят калибровку, при которой перемещают лазерный излучатель,...
Тип: Изобретение
Номер охранного документа: 0002584577
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.412b

Акселерометр-тахогенератор

Изобретение относится к электрическим микромашинам, а именно к датчикам угловых ускорений (акселерометрам), предназначенным для измерения угловых ускорений контролируемых валов в устройствах автоматики и вычислительной техники. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002584576
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.440d

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты пера лопаток компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800°C. Подготавливают поверхности пера лопатки под нанесение...
Тип: Изобретение
Номер охранного документа: 0002585599
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.744a

Магнитоэлектрический генератор и способ стабилизации его выходного напряжения

Изобретение относится к области электротехники и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Технический результат: обеспечение возможности управления и стабилизации напряжения магнитоэлектрического генератора. На роторе генератора расположены...
Тип: Изобретение
Номер охранного документа: 0002597888
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.78ad

Ткань с электромагнитным нагревом

Изобретение относится к конструированию специальных видов ткани и может быть использовано в производстве одежды и аксессуаров для экстремальных условий, характеризующихся низкими значениями температуры окружающей среды. Технический результат изобретения - автономность работы ткани с...
Тип: Изобретение
Номер охранного документа: 0002599003
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78b3

Способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов

Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения износостойкости лопаток компрессоров газотурбинных двигателей. Способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов включает предварительную полировку и очистку...
Тип: Изобретение
Номер охранного документа: 0002599073
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79c9

Высокоскоростной многофазный синхронный генератор

Изобретение относится к области энергомашиностроения, в частности к устройствам, использующимся в системах автономного электроснабжения. Технический результат - уменьшение потерь на вихревые токи и перемагничивание, механическая устойчивость на критических частотах. В корпусе электрической...
Тип: Изобретение
Номер охранного документа: 0002599056
Дата охранного документа: 10.10.2016
Показаны записи 101-110 из 190.
27.12.2015
№216.013.9dab

Способ деформационно-термической обработки объемных полуфабрикатов из al-cu-mg сплавов

Изобретение относится к области металлургии, в частности к термически упрочняемым сплавам на основе алюминия, а именно к способу деформационно-термической обработки высокопрочных сплавов системы Al-Cu-Mg, используемых в качестве конструкционных материалов для деталей авиакосмической техники и...
Тип: Изобретение
Номер охранного документа: 0002571993
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c32f

Способ линейной сварки трением

Изобретение может быть использовано при сварке блисков. На диске и лопатке формируют выступы с поверхностями контакта при сварке трением с необходимым технологическим припуском Р на периферии свариваемых деталей. Приводят лопатку в линейное колебание относительно диска в заданном направлении...
Тип: Изобретение
Номер охранного документа: 0002574566
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c49c

Многосекционный синхронный двигатель

Изобретение относится к области электротехники, а именно к бесконтактным электродвигателям с возбуждением от постоянных магнитов, и может быть использовано в качестве погружного электродвигателя. Технический результат: повышение прочности конструкции многосекционного синхронного двигателя....
Тип: Изобретение
Номер охранного документа: 0002574609
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c7e4

Устройство для чистки ствола орудия (варианты)

Группа изобретений относится к устройствам для обслуживания ствола орудия, а именно к устройствам для чистки ствола. Устройство содержит электродвигатель и планетарный редуктор, размещенные внутри чистящего ерша. Устройство также включает в себя энкодер, связанный с системой управления....
Тип: Изобретение
Номер охранного документа: 0002578919
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c977

Ротор электромеханического преобразователя энергии с постоянными магнитами (варианты)

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами. Технический результат: повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а...
Тип: Изобретение
Номер охранного документа: 0002578131
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2ff1

Датчик скорости изменения ускорения

Изобретение относится к информационно-измерительной технике и вибрационной технике и предназначено для использования в приборостроении и машиностроении. Датчик скорости изменения ускорения содержит ротор с постоянными магнитами, статор с магнитопроводом, измерительную обмотку, при этом...
Тип: Изобретение
Номер охранного документа: 0002580212
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3327

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть...
Тип: Изобретение
Номер охранного документа: 0002582153
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.342d

Способ раскрутки-торможения колес шасси

Изобретение относится к системам привода шасси и касается предварительной раскрутки колес шасси при посадке и торможения после посадки. Перед посадкой каждое колесо шасси вращают с окружной скоростью, равной скорости самолета, с помощью установленных на них электрических машин, которые питают...
Тип: Изобретение
Номер охранного документа: 0002581996
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.34c4

Термоэмиссионный магнитопровод статора

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод...
Тип: Изобретение
Номер охранного документа: 0002581606
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35ab

Внутритрубное транспортное средство (варианты)

Группа изобретений относится к автономным устройствам для перемещения диагностического оборудования внутри трубопровода. Внутритрубное транспортное средство содержит полимерный приводной цилиндрический винт, установленный на приводном валу передаточного редуктора. За счет сцепления приводного...
Тип: Изобретение
Номер охранного документа: 0002581757
Дата охранного документа: 20.04.2016
+ добавить свой РИД