×
20.08.2014
216.012.eb62

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНЫХ НАНОКРИСТАЛЛОВ ПОЛУПРОВОДНИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, при этом перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин с подсветкой галогенной лампы в смеси 48%-ного раствора HF и CHOH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм. Изобретение обеспечивает возможность получения тонких полупроводниковых нитевидных нанокристаллов диаметром менее 10 нм, равномерно распределенных по поверхности подложки и имеющих высокую поверхностную плотность. 7 пр.
Основные результаты: Способ получения нитевидных нанокристаллов полупроводниковых материалов, включающий подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, отличающийся тем, что пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин в смеси 48%-ного раствора HF и CHOH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне 10 мА/см, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.

Изобретение относится к технологии получения полупроводниковых наноструктурированных материалов предназначено для выращивания на кремниевых подложках по схеме пар→капельная жидкость→кристалл (ПЖК) тонких нитевидных нанокристаллов, равномерно распределенных по поверхности подложки и имеющих высокую поверхностную плотность.

В настоящее время известен способ создания регулярно-упорядоченных систем наноразмерных нитевидных кристаллов (НК), использующий в своей основе принцип задания одинаковых размеров частиц металла-катализатора. В [1] в процессе пиролиза моносилана (SiH4+10% Не) с малым разбросом диаметров были выращены кремниевые нанопроволоки с использованием коллоидных частиц золота на поверхности Si-SiO2. Для этого на гладкую подложку из Si-SiO2 осаждали «нанодробинки» золота диаметром 8,4±0,9 нм из раствора коллоидного золота. Затем подложку с осажденными частицами золота помещали в печь. Поперечные размеры нанокристаллов составили: 6,4±1,2 нм; 12,3±2,5 нм; 20,0±2,3 нм и 31,1±2,7 нм. Недостатками способа [1] является большой разброс по диаметрам выращиваемых кристаллов (5-30%), неравномерность распределения кристаллов по поверхности подложки и невозможность обеспечить идентичность размеров капель коллоидного золота.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен способ выращивания регулярных систем НК кремния, описанный в патенте №2117081 [2], в котором маскирование поверхности гладкой кремниевой пластины осуществляется с помощью фотолитографии фоторезистом, а металл-катализатор наносят посредством электрохимического осаждения островков из раствора электролита. Недостатком этого способа является непригодность для создания наноразмерных НК с диаметрами существенно менее 1000 нм из-за физических пределов применяемых фотолитографических методов, поскольку не удается применяемыми методами фотолитографии в фоторезисте сформировать цилиндрические отверстия диаметрами существенно менее 250 нм. А создание отверстий в фоторезисте с поперечными размерами гораздо менее 250 нм является главным необходимым условием формирования одинаковых по размеру наночастиц металла-катализатора ПЖК-роста наноразмерных нитевидных кристаллов.

Наиболее близким техническим решением, выбранным нами в качестве прототипа, является способ выращивания регулярных систем НК кремния, предложенный в патенте №2336224 [3]. Отличие этого способа состоит в том, что цилиндрические отверстия в фоторезисте создают диаметром менее 250 нм импринт-литографией, островки металла толщиной менее 12,5 нм осаждают из раствора электролита, после чего удаляют фоторезист в 5%-ном растворе плавиковой кислоты. Недостатком способа является непригодность его для создания тонких и ультратонких (единицы и десятые доли нанометра) НК полупроводниковых материалов из-за ограничений на проектные нормы элементов, формируемых импринт-литографией (достигнутое разрешение элементов в импринт-литографии для производственных изделий составляет 20-25 нм, для лабораторных образцов - 5-6 нм, а расстояние между элементами структуры 20-30 нм).

Изобретение направлено на управляемое изготовление поверхностных структур тонких и ультратонких нитевидных нанокристаллов полупроводниковых материалов.

Это достигается тем, что перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин в смеси 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см2, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.

Способ выращивания тонких и ультратонких нитевидных нанокристаллов полупроводниковых материалов, имеющих диаметр порядка единиц нанометра и менее, осуществляется следующим образом. Поверхность кремниевой пластины с кристаллографической ориентацией (111) или (100) сильно легируется фосфором. Затем при определенной плотности тока, времени процесса и заданном составе электролита осуществляется электрохимическое травление сильно легированной фосфором кремниевой пластины, являющейся анодом электрохимической ячейки. Таким образом в самой пластине формируют равномерно распределенные по ее поверхности поры или скважины с приблизительно одинаковыми диаметрами порядка единиц или десятых долей нанометра. В дальнейшем на пористую поверхность кремниевой пластины напыляется тонкая пленка металла-катализатора. Затем подложка помещается в кварцевый реактор, продуваемый водородом, нагревается до температуры роста НК. В течение нескольких минут в водороде производится разбиение тонкой пленки металла-катализатора на мелкие наночастицы, локализующиеся в порах, и сплавление наночастиц металла с подложкой. Затем в газовую фазу подается питающий материал и производится выращивание ультратонких нитевидных нанокристаллов.

Легирование фосфором определяется тем, что атомы фосфора, внедренные в кремний, являются активаторами процесса образования нанопор при последующем электрохимическом травлении, и гладкий поверхностный слой кремниевой подложки покрывается равномерным пористым слоем с размерами (радиусами) пор на уровне 3 нм или менее.

Величина удельного электрического сопротивления (0,008-0,018 Ом·см) кремния определяется тем, что при указанных значениях удельного сопротивления соответствующая концентрация атомов фосфора в кремнии обеспечивает получение нанопор с размерами 3 нм и менее, позволяющих формировать в их объеме наночастицы металла-катализатора, способствующие получению тонких и ультратонких НК. Чтобы получить нанокристал заданного диаметра, необходимо задавать в 2,5 раза больший диаметр основания НК. Нанопоры с радиусами 3 нм позволяют получать НК с диаметрами порядка 2,4 нм.

Длительность анодирования поверхности кремния не более 5 мин обусловлена необходимостью минимизации объемных размеров нанопор для последующего формирования наночастиц катализатора необходимых объемов и выращивания тонких и ультратонких НК, поскольку с увеличением времени анодирования диаметр и глубина пор увеличиваются.

Высокое качество поверхности при анодном растворении кремния обеспечивается в безводном электролите, представляющем собой раствор фтористоводородной кислоты (HF) в этаноле. Состав электролита (смесь 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1) определяется необходимостью присутствия в травящем растворе растворителя (плавиковая кислота) для растворения окиси кремния.

Плотность анодного тока на уровне 10 мА/см2 обусловлена ее оптимальным значением для получения необходимых результатов травления кремния. Меньшая плотность тока приводит только к травлению кремния и недостаточна для образования пор. Большая величина плотности тока анодизации обуславливает микроскопическую эрозию поверхности кремния.

Толщина пленки металла не более 2 нм определяется тем, что для формирования единственной капли металла-катализатора в объеме поры с радиусами на уровне 3 нм необходимо обеспечить соотношение толщина пленки -диаметр поры на уровне 0,33.

Использование предлагаемого способа позволяет существенно облегчить решение проблемы создания наноэлектронных устройств на базе ультратонких нитевидных нанокристаллов (солнечных батарей на основе модифицированных нитевидными нанокристаллами фотоэлектрических структур солнечных элементов, многоканальных полевых транзисторов с оболочковым затвором, оперативных запоминающих устройств компьютеров высокой плотности информации и др.).

Примеры осуществления способа

Пример 1

Исходные пластины кремния КДБ (100) легировались фосфором в диффузионной однозонной печи СД.ОМ-3/100 до величины удельного электрического сопротивления 0,018 Ом·см. В качестве диффузанта использовался треххлористый фосфор (ос.ч). Затем проводилось электрохимическое анодирование поверхности кремния в течение 5 мин в тефлоновой электролитической ячейке, где располагались кремниевая пластина и платиновый катод. В качестве электролита применялась смесь плавиковой кислоты (HF, 48%) и этанола (C2H5OH, 96%) в соотношении 1:1. В качестве подсветки тыльной стороны пластины использовалась галогенная лампа. После анодирования на поверхность пластины на электронно-лучевой установке ВАК-501 напылялась тонкая пленка никеля толщиной 2 нм. Подготовленные подложки разрезались и помещались в ростовую печь. В течение 2-10 минут при температуре 900-1100°C осуществлялось сплавление никеля с кремнием и формировались нанокапли расплава Ni-Si. Затем в газовую фазу подавали тетрахлорид кремния при мольном соотношении MSiCl4/MH2=0,008 и выращивали НК кремния. Время выращивания составляло (2-10) минут в зависимости от необходимой длины нанокристаллов. Кристаллы кремния имели диаметр 2,4±0,2 нм и длину ~25 нм.

Пример 2

Выращивание ультратонких нитевидных нанокристаллов проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалась электролитическая медь. Толщина тонкой пленки меди составляла 2 нм. Выращенные НК имели диаметр 2,2±0,2 нм и длину ~30 нм.

Пример 3

Выполнение изобретения осуществлялось аналогично примеру 1, но пластины кремния легировались фосфором до удельного сопротивления 0,008 Ом·см. Полученные результаты соответствовали результатам примера 1.

Пример 4

Выполнение изобретения осуществлялось аналогично примеру 1, но толщина напыляемой пленки никеля составила 1,5 нм. Полученные результаты соответствовали результатам примера 1, но диаметры выращенных нанокристаллов составляли 1,6±0,2 нм.

Пример 5

Выращивание ультратонких нитевидных нанокристаллов проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалось олово. Толщина тонкой пленки олова составляла 2 нм. Выращенные НК имели диаметр 1,4±0,2 нм и длину ~15 нм.

Пример 6

Выполнение изобретения осуществлялось аналогично примеру 1, но в газовую фазу подавали тетрахлорид кремния (SiCl4) и тетрахлорид германия (GeCl4) и выращивали НК твердого раствора SixGe1-x. Соотношение объемных концентраций SiCl4 и GeCl4 составляло 1:1. Кристаллы твердого раствора SixGe1-x имели диаметр 2,6±0,2 нм и длину ~20 нм.

Пример 7

Выполнение изобретения осуществлялось аналогично примеру 1, но в газовую фазу подавали тетрахлорид германия (GeCl4) при мольном соотношении MGeCl4/MH2=0,008 и температуре 700-800°C и выращивали НК германия. Соотношение объемных концентраций SiCl4 и GeCl4 составляло 1:1. Кристаллы германия имели диаметр 1,9±0,2 нм и длину ~28 нм.

Список использованных источников

1. Gudiksen M.S., Lieber С.М. Diameter-selective synthesis of semiconductor nanowires // J. Am. Chem. Soc; (Communication); 2000; 122 (36); pp.8801-8802.

2. Патент РФ №2117081, МПК6 C30B 029/62, 025/02 / А.А.Щетинин, В.А.Небольсин, А.И.Дунаев, Е.Е.Попова, П.Ю.Болдырев.

3. Патент РФ №2336224, МПК6 C30B 029/62, 025/00 / В.А.Небольсин, А.А.Щетинин, А.И.Дунаев, М.А.Завалишин.

Способ получения нитевидных нанокристаллов полупроводниковых материалов, включающий подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, отличающийся тем, что пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин в смеси 48%-ного раствора HF и CHOH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне 10 мА/см, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 247.
27.06.2015
№216.013.5a78

Устройство ориентации гелиоустановки

Изобретение относится к области гелиотехники, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. В устройстве ориентации гелиоустановки, содержащем...
Тип: Изобретение
Номер охранного документа: 0002554701
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a7c

Безредукторный ветроэлектроагрегат

Изобретение относится к ветроэнергетике. Безредукторный ветроэлектроагрегат содержит башню, поворотное основание, тихоходное колесо, быстроходные колеса, роторные элементы, статор и направляющее устройство. Быстроходные колеса закреплены на концах лопастей тихоходного ветроколеса. Статор...
Тип: Изобретение
Номер охранного документа: 0002554705
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c7c

Способ испытания образцов листового материала на растяжение

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях плоской деформации. Способ испытания конструкционного листовых материалов на растяжение заключается в том, что по всей противолежащей рабочей...
Тип: Изобретение
Номер охранного документа: 0002555217
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5cad

Способ изготовления проволочного электрода-инструмента для электроэрозионной обработки

Изобретение относится к способу изготовления проволочного электрода-инструмента для электроэрозионной обработки и может быть использовано при электроэрозионном прошивании отверстий малого диаметра с большой глубиной в металлических материалах. Закрепляют конец электрода-инструмента в подвижной...
Тип: Изобретение
Номер охранного документа: 0002555266
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d45

Камера жидкостного ракетного двигателя

Изобретение относится к области ракетной техники может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит смесительную головку, внутреннюю профилированную оболочку, на внешней поверхности которой выполнены ребра тракта охлаждения, наружную...
Тип: Изобретение
Номер охранного документа: 0002555418
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d46

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную головку, регенеративно...
Тип: Изобретение
Номер охранного документа: 0002555419
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d49

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования. Камера...
Тип: Изобретение
Номер охранного документа: 0002555422
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d7f

Способ испытания конструкционного материала на пластичность

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации. Способ испытания конструкционного материала на пластичность заключается в том, что гладкий...
Тип: Изобретение
Номер охранного документа: 0002555476
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e00

Статор ветроэлектроагрегата

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения. Торцевой магнитопровод выполнен в виде ферромагнитной траверсы крепления ветроколес. Преимуществом...
Тип: Изобретение
Номер охранного документа: 0002555605
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6041

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002556182
Дата охранного документа: 10.07.2015
Показаны записи 91-100 из 290.
10.01.2015
№216.013.175d

Инструмент и способ калибровки отверстий малого сечения в форсунках

Изобретение относится к калибровке отверстий малого сечения в форсунках. Предложен инструмент в виде токопроводящей проволоки с нанесенными нетокопроводящими износостойкими твердыми узкими поясками, наружный диаметр которых уменьшается по длине проволоки пропорционально толщине наносимого...
Тип: Изобретение
Номер охранного документа: 0002537409
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175e

Электрод-инструмент для прошивки отверстий

Изобретение относится к области машиностроения и может быть использовано при прошивке отверстий преимущественно малого диаметра в металлических заготовках. Электрод-инструмент содержит металлическую рабочую часть с рабочим и технологическим торцами, выполненную с возможностью подачи в зону...
Тип: Изобретение
Номер охранного документа: 0002537410
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.177a

Способ удаления диэлектрических покрытий с металлической основы

Изобретение относится к области машиностроения и может быть использовано при удалении диэлектрических покрытий с металлических изделий путем их обработки вращаемым непрофилированным электродом-щеткой. В способе электрод-щетку с ворсом в виде радиальных проволок перед обработкой устанавливают с...
Тип: Изобретение
Номер охранного документа: 0002537438
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b4

Устройство для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537496
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1807

Способ вырубки

Изобретение относится к разделительным операциям обработки металлов давлением и может быть использовано для вырубки тонкого материала. Заготовку укладывают на торец установленного в жесткой обойме на плите основания из мягкого металла. Осуществляют прижим припуска заготовки, осадку и вырубку...
Тип: Изобретение
Номер охранного документа: 0002537579
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180d

Способ очистки воздуха и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537585
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180e

Конденсационная камера

Изобретение относится к очистке воздуха. Конденсационная камера для установки очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока и выходной канал для выхода очищенного газового потока, средство для вдувания пара,...
Тип: Изобретение
Номер охранного документа: 0002537586
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180f

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха. При осуществлении способа пар подают в конденсационную камеру, состоящую из нескольких последовательно расположенных конденсационных секций, каждая из которых содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного...
Тип: Изобретение
Номер охранного документа: 0002537587
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1810

Установка для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Установка для очистки воздуха содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока. Установка также...
Тип: Изобретение
Номер охранного документа: 0002537588
Дата охранного документа: 10.01.2015
+ добавить свой РИД