×
10.08.2014
216.012.e89e

Результат интеллектуальной деятельности: СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ ШЕСТИ ПАРАМЕТРОВ ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА ПРИ ПРОВЕДЕНИИ ТРАЕКТОРНЫХ ИЗМЕРЕНИЙ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002525343
Дата охранного документа
10.08.2014
Аннотация: Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС). Первая ИС работает в запросном когерентном режиме и измеряет относительные дальность и скорость КА, а также регистрирует время прихода ответной посылки запроса дальности с КА. Две другие ИС работают в беззапросном некогерентном режиме. Они принимают ответный (сдвинутый по частоте) сигнал с КА, сформированный из запросного сигнала первой ИС. По принятому сигналу две данные ИС определяют дальность и скорость КА относительно этих ИС, а также время прихода с КА ответной посылки запроса. Информация, принятая с трех указанных ИС, передается для обработки в баллистический центр. Технический результат группы изобретений заключается в обеспечении более высокой точности определения траектории полета КА. 2 н.п. ф-лы, 3 ил.

Область техники

Изобретение относится к области космонавтики, а именно к системам траекторных измерений космических аппаратов.

Уровень техники

Известно [1], что для определения траектории движения космического аппарата (КА) и прогноза его дальнейшего движения используются результаты траекторных измерений, проводимых наземными измерительными станциями (ИС) (2, 3, 4) и бортовым приемоответчиком КА (1) (см. фиг.1).

В общем случае для определения траектории движения КА необходимо измерять шесть параметров движения КА: наклонную дальность от ИС до КА (R), радиальную составляющую скорости движения КА относительно ИС , угол места КА (β), скорость изменения этого угла , азимутальный угол положения КА относительно ИС (α) и скорость изменения этого угла (α).

ИС, которая сможет измерять все шесть параметров движения КА, является весьма сложным и дорогостоящим устройством. На практике при проведении траекторных измерений используют измерение только двух параметров движения КА-(R) и , которые последовательно измеряются несколькими ИС (2, 3, 4) территориально разнесенными в широтном и долготном направлениях. При такой схеме измерений в большинстве случаев погрешности определения траектории движения КА оказываются в пределах, достаточных для решения задач управления КА. При этом для расчета траектории используются шесть параметров движения, измеряемых последовательно несколькими ИС: R1 - измеряемыми ИС1 (2, 8, 9, 10, 11, 12), R2, - измеряемыми ИС2 (3, 8, 9, 10, 11, 12) и R3, - измеряемыми ИС3 (4, 8, 9, 10, 11, 12). Измерения указанных параметров производятся в разное время, поэтому при расчете траектории движения КА все измерения приходится пересчитывать на одно и то же время, что приводит к увеличению погрешностей и, как следствие, к снижению точности определения траектории КА, что является основным недостатком указанного способа траекторных измерений КА.

Структурная схема способа и системы последовательных измерений параметров движения КА (аналога) представлена на фиг.1.

Раскрытие изобретения

Заявленные способ и система одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений направлены на устранение недостатка аналога.

Технический результат заявляемого изобретения по сравнению с аналогами заключается в обеспечении более высокой точности определения траектории полета КА.

Технический результат достигается тем, что способ одновременного определения шести параметров движения космического аппарата (КА) при проведении траекторных измерений, заключающийся в том, что формируют запросный сигнал наземной запросной измерительной станцией, передают сигнал на приемник сигнала космического аппарата, принимают, обрабатывают и формируют из запросного сигнала в когерентном преобразователе частоты космического аппарата высокостабильный ответный сигнал, одновременно ретранслируют с передатчика КА высокостабильный ответный сигнал на наземную запросную измерительную станцию, а также первую и вторую наземные беззапросные измерительные станции, при этом наземная запросная измерительная станция производит измерения дальности от нее до КА, составляющую скорости КА относительно наземной запросной измерительной станции и время приема высокостабильного ответного сигнала с борта КА в запросном когерентном режиме, а первая и вторая наземные беззапросные измерительные станции, работающие в беззапросном некогерентном режиме, определяют радиальные составляющие скорости КА относительно первой и второй наземных беззапросных измерительных станций и время приема высокостабильного ответного сигнала с борта КА, используя для измерений принятый высокостабильный ответный сигнал с борта КА, сформированный из запросного сигнала наземной запросной измерительной станции, по данным времени приема высокостабильного сигнала тремя наземными измерительными станциями и измеренному значению дальности наземной запросной измерительной станцией до КА в баллистическом центре определяют дальности от первой и второй наземных беззапросных измерительных станций до КА.

Система одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений включает в себя космический аппарат (КА), в котором расположены последовательно соединенные приемник сигналов КА, когерентный преобразователь частоты КА, передатчик КА, приемо-передающую антенну КА, выход которой соединен с входом приемника сигналов КА, а вход соединен с выходом передатчика КА, наземную запросную измерительную станцию, включающую в себя первый наземный приемник сигналов, первую систему траекторных измерений, первый вход которой соединен с первым выходом первого наземного приемника сигналов, первый генератор точных частот, третий выход которого соединен с вторым входом первого наземного приемника сигналов, первый выход с вторым входом первой системы траекторных измерений, когерентный преобразователь частоты, первый вход которого соединен с вторым выходом первого генератора точных частот, второй вход соединен с выходом первого наземного приемника сигналов, наземный передатчик, первый вход которого соединен с выходом первого генератора точных частот, второй вход соединен с первым выходом когерентного преобразователя частоты, приемопередающую антенну, вход которой соединен с выходом наземного передатчика, а выход соединен с первым входом первого наземного приемника сигналов, первый, второй и третий выходы первой системы траекторных измерений являются первым и вторым выходами наземной запросной измерительной станции, первую наземную беззапросную измерительную станцию, включающую в себя первую приемную антенну, второй наземный приемник сигналов, первый вход которого соединен с выходом первой приемной антенны, вторую систему траекторных измерений, второй вход которой соединен с выходом второго наземного приемника сигналов, второй генератор точных частот, первый выход которого соединен с первым входом второй системы траекторных измерений, а второй выход соединен с вторым входом второго наземного приемника, первый и второй выходы второй системы траекторных измерений являются первым и вторым выходом первой наземной беззапросной измерительной станции, вторую наземную беззапросную измерительную станцию, включающую в себя вторую приемную антенну, третий наземный приемник сигналов, первый вход которого соединен с выходом второй приемной антенны, третью систему траекторных измерений, второй вход которой соединен с выходом третьего наземного приемника сигналов, третий генератор точных частот, первый выход которого соединен с первым входом третьей системы траекторных измерений, а второй выход соединен с вторым входом третьего наземного приемника, первый и второй выходы третьей системы траекторных измерений являются первым и вторым выходом второй наземной беззапросной измерительной станции.

Краткое описание чертежей

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами, где показано следующее. На фиг.1 - аналог заявленного способа и системы, где:

1. Космический аппарат КА;

2. Первая наземная измерительная станция ИС1;

3. Вторая наземная измерительная станция ИС2;

4. Третья наземная измерительная станция ИС3;

5. Передатчик КА;

6. Когерентный преобразователь частоты КА;

7. Приемник сигналов КА;

8. Первый наземный приемник сигналов;

9. Первая система траекторных измерений;

10. Первый генератор точных частот;

11. Первый когерентный преобразователь частоты;

12. Первый наземный передатчик;

13. Второй наземный приемник сигналов;

14. Вторая система траекторных измерений;

15. Второй генератор точных частот;

16. Второй когерентный преобразователь частоты;

17. Второй наземный передатчик;

18. Третий наземный приемник сигналов;

19. Третья система траекторных измерений;

20. Третий генератор точных частот;

21. Третий когерентный преобразователь частоты;

22. Третий наземный передатчик;

23 Приемо-передающая антенна КА;

24. Первая приемо-передающая антенна;

25. Вторая приемо-передающая антенна;

26. Третья приемо-передающая антенна;

27. Запросный сигнал ИС1;

28. Запросный сигнал ИС2;

29. Запросный сигнал ИС3;

30. Ответный сигнал КА на сигнал ИС1;

31. Ответный сигнал КА на сигнал ИС2;

32. Ответный сигнал КА на сигнал ИС3.

На фиг.2 - заявляемые способ одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений и система для осуществления данного способа.

33. Космический аппарат КА;

34. Наземная запросная измерительная станция ИС;

35. Первая наземная беззапросная измерительная станция ИС1;

36. Вторая наземная беззапросная измерительная станция ИС2;

37. Передатчик КА;

38. Когерентный преобразователь частоты КА;

39. Приемник сигналов КА;

40. Первый наземный приемник сигналов;

41. Первая система траекторных измерений;

42. Первый генератор точных частот;

43. Когерентный преобразователь частоты;

44. Наземный передатчик;

45. Второй наземный приемник сигналов;

46. Вторая система траекторных измерений;

47. Второй генератор точных частот;

48. Третий наземный приемник сигналов;

49. Третья система траекторных измерений;

50. Третий генератор точных частот;

51. Приемо-передающая антенна КА;

52. Приемо-передающая антенна;

53. Первая приемная антенна;

54. Вторая приемная антенна;

55. Запросный сигнал ИС;

56. Ответный сигнал КА на сигнал ИС.

На фиг.3 - алгоритм вычислений в баллистическом центре.

Осуществление изобретения

Заявляемый способ одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений и система для осуществления данного способа, как и аналоги, предусматривают использование территориально разнесенных наземных ИС, но отличаются от аналогов следующим:

- из трех ИС (34, 35, 36) только одна наземная (ИС) (34) работает в запросном (когерентном) режиме и измеряет R1 и . Кроме того, наземная запросная ИС определяет и регистрирует время прихода ответной посылки запроса дальности с КА - T1 (40, 41, 42, 43, 44);

- наземные беззапросные ИС1 и ИС2 работают в беззапросном (некогерентном) режиме и принимают ответный сигнал с КА - ƒотв (56), сформированный из запросного сигнала ƒзапр наземной запросной ИС (55) и сдвинутый относительно него по частоте.

По принятому сигналу наземных беззапросных ИС1 и ИС2 определяют и соответственно, а так же время прихода с КА ответной посылки запроса дальности наземной беззапросной ИС1 - Т2 (45, 46, 47) и наземной беззапросной ИС2 - Т3.(48, 49, 50).

Информация, принятая наземными ИС, ИС1 и ИС2, передается в баллистический центр (БЦ) (см. фиг.3), где определяется разность задержек прохождения сигнала ответной дальности - ΔT1-2 и ΔT1-3, где ΔT1-2=T1-T2, ΔT1-3=T1-T3, и определяется разность значений дальности от наземных ИС до КА:

ΔR1-2=ΔТ1-2·С,

ΔR1-3=ΔТ1-3·С, где С - скорость света.

Значения наклонных дальностей от наземных беззапросных ИС1 и ИС2 до КА определяются как

R2=R1+ΔR1-2,

R3=R1+ΔR1-3,

где R1 значение наклонной дальности между наземной запросной ИС и КА, измеренное запросным методом.

Таким образом, в БЦ оказываются известными все шесть параметров движения КА - R1; R2; R3; ; и , измеренные одновременно, что повышает точность определения траектории движения КА.

Заявляемая система одновременного определения шести параметров движения КА при приведении траекторных измерений предусматривает оснащение всех наземных ИС высокостабильными генераторами частоты (42, 47, 50).

Заявляемый способ одновременного измерения всех параметров движения КА наиболее эффективно может использоваться для траекторных измерений лунных КА и межпланетных КА на приземном участке полета на дальностях 1-2 млн км.

В общем случае заявляемый способ может быть использован для траекторных измерений любых КА, высота орбиты (траектории) которых позволяет одновременно видеть не менее трех разнесенных наземных ИС, участвующих в измерениях R1, T1, T2 и Т3, по которым вычисляются значения R2 и R3. По полученным шести параметрам движения определяется траектория движения КА. Так как измерение всех параметров движения КА производилось одновременно, определение траектории движения КА производится с высокой точностью.

Литература

1. Молотов Е.П. Наземные радиотехнические системы управления космическими аппаратами. М.: ФИЗМАТЛИТ, 2004.


СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ ШЕСТИ ПАРАМЕТРОВ ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА ПРИ ПРОВЕДЕНИИ ТРАЕКТОРНЫХ ИЗМЕРЕНИЙ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ ШЕСТИ ПАРАМЕТРОВ ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА ПРИ ПРОВЕДЕНИИ ТРАЕКТОРНЫХ ИЗМЕРЕНИЙ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ ШЕСТИ ПАРАМЕТРОВ ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА ПРИ ПРОВЕДЕНИИ ТРАЕКТОРНЫХ ИЗМЕРЕНИЙ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 71.
20.08.2014
№216.012.e9b2

Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика. Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата содержит фотоприемник на...
Тип: Изобретение
Номер охранного документа: 0002525634
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ecb1

Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА. ИС измеряют значения радиальной скорости КА...
Тип: Изобретение
Номер охранного документа: 0002526401
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fbdc

Способ радиоприема высокоскоростной информации космической радиолинии и устройство для его реализации

Группа изобретений относится к вычислительной технике. Технический результат заключается в компенсации детерминированных искажений, вызываемых эффектом Доплера с целью уменьшения потери сигнала. Способ радиоприема высокоскоростной информации космической радиолинии, в котором выполняют прием...
Тип: Изобретение
Номер охранного документа: 0002530322
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe90

Способ дистанционного зондирования земли (дзз)

Изобретение относится к области оптического приборостроения и может быть использовано для получения изображений земной поверхности через турбулентную атмосферу. Способ основан на совместном использовании длинно-экспозиционного изображения и серии из N спектрально-фильтруемых...
Тип: Изобретение
Номер охранного документа: 0002531024
Дата охранного документа: 20.10.2014
27.12.2014
№216.013.15b4

Способ очистки, активации и осветления серебряных покрытий в газоразрядной плазме

Заявленное изобретение относится к области радиоэлектронной техники и микроэлектроники, а также может использоваться в других областях техники для очистки, активации и осветления различных изделий с серебряным покрытием. Способ очистки, активации и осветления серебряных покрытий в газоразрядной...
Тип: Изобретение
Номер охранного документа: 0002536980
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1622

Способ синхронизации шкал времени двух и более территориально удаленных наземных хранителей времени и система для его реализации

Изобретение относится к космической области техники и может применяться в спутниковых навигационных системах типа ГЛОНАСС, GPS и др. для синхронизации как минимум двух территориально удаленных наземных хранителей времени спутниковой навигационной системы, например центральных синхронизаторов...
Тип: Изобретение
Номер охранного документа: 0002537090
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.18f6

Способ коррекции траектории полета космического аппарата и устройство для его реализации

Способ коррекции траектории полета космического аппарата и устройство для его реализации относится к космической технике, в частности к навигации спутниковых систем. Достигаемый технический результат - повышение точности навигации комплексированием ошибок детерминированного происхождения в...
Тип: Изобретение
Номер охранного документа: 0002537818
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ade

Формирователь радиосигналов с цифровым предыскажением четными гармониками

Изобретение относится к области радиопередающих устройств и может быть использовано в составе бортовой аппаратуры космических аппаратов. Достигаемый технический результат - уменьшение величины продуктов интермодуляционных искажений третьего порядка, малые затраты ресурсов на реализацию....
Тип: Изобретение
Номер охранного документа: 0002538306
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.26ea

Микросистемный ёмкостной датчик измерения физических величин

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может выполнять роль исполнительного элемента датчиковой аппаратуры в части измерения параметров перемещения, ускорения, температуры, механической силы,...
Тип: Изобретение
Номер охранного документа: 0002541415
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ff

Способ плазмохимической обработки подложек из поликора и ситалла

Изобретение относится к области радиоэлектронной техники и микроэлектроники и может быть использовано для плазмохимической обработки подложек из поликора и ситалла. В способе плазмохимической обработки подложек из поликора и ситалла производят предварительную протирку изделий спиртом со всех...
Тип: Изобретение
Номер охранного документа: 0002541436
Дата охранного документа: 10.02.2015
Показаны записи 31-40 из 62.
20.08.2014
№216.012.e9b2

Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика. Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата содержит фотоприемник на...
Тип: Изобретение
Номер охранного документа: 0002525634
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ecb1

Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА. ИС измеряют значения радиальной скорости КА...
Тип: Изобретение
Номер охранного документа: 0002526401
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fbdc

Способ радиоприема высокоскоростной информации космической радиолинии и устройство для его реализации

Группа изобретений относится к вычислительной технике. Технический результат заключается в компенсации детерминированных искажений, вызываемых эффектом Доплера с целью уменьшения потери сигнала. Способ радиоприема высокоскоростной информации космической радиолинии, в котором выполняют прием...
Тип: Изобретение
Номер охранного документа: 0002530322
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe90

Способ дистанционного зондирования земли (дзз)

Изобретение относится к области оптического приборостроения и может быть использовано для получения изображений земной поверхности через турбулентную атмосферу. Способ основан на совместном использовании длинно-экспозиционного изображения и серии из N спектрально-фильтруемых...
Тип: Изобретение
Номер охранного документа: 0002531024
Дата охранного документа: 20.10.2014
27.12.2014
№216.013.15b4

Способ очистки, активации и осветления серебряных покрытий в газоразрядной плазме

Заявленное изобретение относится к области радиоэлектронной техники и микроэлектроники, а также может использоваться в других областях техники для очистки, активации и осветления различных изделий с серебряным покрытием. Способ очистки, активации и осветления серебряных покрытий в газоразрядной...
Тип: Изобретение
Номер охранного документа: 0002536980
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1622

Способ синхронизации шкал времени двух и более территориально удаленных наземных хранителей времени и система для его реализации

Изобретение относится к космической области техники и может применяться в спутниковых навигационных системах типа ГЛОНАСС, GPS и др. для синхронизации как минимум двух территориально удаленных наземных хранителей времени спутниковой навигационной системы, например центральных синхронизаторов...
Тип: Изобретение
Номер охранного документа: 0002537090
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.18f6

Способ коррекции траектории полета космического аппарата и устройство для его реализации

Способ коррекции траектории полета космического аппарата и устройство для его реализации относится к космической технике, в частности к навигации спутниковых систем. Достигаемый технический результат - повышение точности навигации комплексированием ошибок детерминированного происхождения в...
Тип: Изобретение
Номер охранного документа: 0002537818
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ade

Формирователь радиосигналов с цифровым предыскажением четными гармониками

Изобретение относится к области радиопередающих устройств и может быть использовано в составе бортовой аппаратуры космических аппаратов. Достигаемый технический результат - уменьшение величины продуктов интермодуляционных искажений третьего порядка, малые затраты ресурсов на реализацию....
Тип: Изобретение
Номер охранного документа: 0002538306
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.26ea

Микросистемный ёмкостной датчик измерения физических величин

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может выполнять роль исполнительного элемента датчиковой аппаратуры в части измерения параметров перемещения, ускорения, температуры, механической силы,...
Тип: Изобретение
Номер охранного документа: 0002541415
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ff

Способ плазмохимической обработки подложек из поликора и ситалла

Изобретение относится к области радиоэлектронной техники и микроэлектроники и может быть использовано для плазмохимической обработки подложек из поликора и ситалла. В способе плазмохимической обработки подложек из поликора и ситалла производят предварительную протирку изделий спиртом со всех...
Тип: Изобретение
Номер охранного документа: 0002541436
Дата охранного документа: 10.02.2015
+ добавить свой РИД