×
10.08.2014
216.012.e83d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО ЦЕОЛИТА ТИПА А

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности, а именно к получению синтетического цеолита типа А. Способ получения включает смешивание природного глинистого минерала-каолина с порообразователем и предварительно прокаленным при 550-700°С порошковым каолином, взятым в количестве 10-30%. В полученную смесь добавляют пластифицирующую жидкость до получения однородной массы и формуют гранулы. Затем осуществляют сушку гранул, термоактивацию, гидротермальную кристаллизацию, промывку и заключительную сушку. В качестве поробразователя используют алюмосиликатные нанотрубки, соответствующие по составу минералу каолиниту, или их смесь с древесной мукой. Гидротермальную кристаллизацию осуществляют в растворе гидрооксида натрия. Изобретение обеспечивает возможность получения синтетического гранулированного цеолита типа А, обладающего высокой механической прочностью и адсорбционной емкостью по парам воды. 3 з.п. ф-лы, 1 табл., 106 пр.

Область техники

Данное изобретение относится к химической промышленности, конкретно к получению синтетических гранулированных цеолитных сорбентов.

Промышленное производство цеолитов типа A решит проблемы получения сорбентов для комплексного подхода к осуществлению технологических процессов. Цеолит типа A состоит из кристаллической фазы LTA (обозначение топологии каркаса) [Баррер Р. Гидротермальная химия цеолитов: Пер. с англ. - М.: Мир, 1985, 27 с.], структурного типа A [Минералогическая энциклопедия / Под редакцией К. Фрея: Пер. с англ. - Л.: Недра, 1985, 319 с]. В результате гидротермальной кристаллизации в растворе гидрооксида натрия, получается цеолит NaA, со стереорегулярными рабочими порами 0,4 нм. [Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ. Ч.I. С.-Пб.: АНО НПО «Мир и Семья», АНО НПО «Профессионал», 2002, 367 с.].

Полученный цеолит типа A может быть использован в различных областях промышленности: нефтехимической, металлургической, нефтегазовой и медицинской для процессов осушки и очистка различных газов (природных газов, нефтяных попутных газов, воздуха, инертных газов и различных углеводородных газов).

Уровень техники

Известен способ получения гранулированного цеолита типа A высокой фазовой чистоты, [патент RU №2203222, C1, дата публикации 27.04.2003 г.].

Согласно данному изобретению каолин смешивают с диоксидом кремния и древесным углем, добавляют 30-70% порошкового цеолита типа A, обрабатывают 2% раствором едкого натра в количестве 10-20 мас.%, в полученную смесь добавляют раствор 1,5% раствор поливинилового спирта до образования однородной пластичной массы, формуют в гранулы, направляют на вызревание в течение 24 часов, подвергают чистовому формованию, сушат в два этапа при температуре 54 и 100°C, проводят термическую активацию при температуре 550-630°C, полученные гранулы охлаждают и подвергают гидротермальной кристаллизации в щелочном растворе, проводят термопаровую обработку гранул при температуре 110-160°C, промывают умягченной водой, полученные гранулы цеолита типа А сушат при температуре 120-200°C.

Известен способ получения сорбента и сорбент, [патент RU №2097124, C1, дата публикации 27.11.1997 г.].

Согласно данному изобретению цеолит NaA получают путем смешения источников кремния (кремнегель, силикозоль - 30% SiO2), алюминия (алюминат натрия, раствор сульфата алюминия, каолин), раствора гидрооксида натрия, 2-15% затравочных кристаллов от веса SiO2 и последующей кристаллизацией гидрогеля при 80-110°C. Полученный цеолит модифицируют ионным обменом или пропиткой солями кальция, фильтруют, сушат. Модифицированный цеолит перемешивают с 20-25 мас.% пластифицированного или пептизированного связующего (тонкоизмельченной глины или оксида алюминия) и водой до влажности продукта 30-55%. Смесь формуют, полученные гранулы прокаливают при температуре 400-600°C в течение 2-6 часов. Возможно наличие дополнительной стадии, заключающейся в модифицировании сорбента катионами Na+ или Na+ и Ca2+, путем обработки прокаленных гранул раствором NaOH или раствором, содержащим катионы Na+ и Ca2+ (обработку гранул проводят при 20-60°C), и последующей сушкой модифицированных гранул.

Основными недостатками перечисленных способов является техническая сложность синтеза, и применение в составе исходной смеси синтетического порошкового цеолита в достаточно большом количестве до 70%, что резко увеличивает себестоимость готовой продукции.

Наиболее близким по своей технической сущности и достигаемому техническому результату является изобретение «Способ получения синтетического гранулированного цеолита типа A», [патент RU №2321539, C1, дата публикации 20.04.2007 г.]. Согласно данному способу каолин смешивают с древесной мукой, в исходную смесь вводят 5-20 мас.% порошкового цеолита типа A, 5-15 мас.% порошкового каолина, предварительно прокаленного при температуре 500-600°C, 2 мас.% хлористого натрия и перемешивают. При перемешивании в готовую смесь добавляют раствор 5% раствор лигносульфоната до образования однородной пластичной массы, которую затем формуют в гранулы, подвергают вызреванию, чистовому формованию, гранулы предварительно сушат при температуре 80-130°C, проводят термическую активацию при температуре 700-850°C, охлаждают, полученные гранулы подвергают гидротермальной кристаллизации в щелочном растворе. Готовый цеолит обрабатывают острым водяным паром, промывают водой и сушат при температуре 250-350°C. Этот способ выбран в качестве прототипа предложенного решения.

Недостатками прототипа является применение древесной муки и лигносульфоната, а также применение до 20% порошкового цеолита типа A, что увеличивает себестоимость продукции. Древесная мука, введенная в состав гранулы, не является эффективным порообразователем после термической обработки. Большое количество лигносульфоната, добавленное в виде 5% раствора с целью образования пластичной массы для формовки способствует формированию загрязняющих цеолит типа A примесей. Эти факторы негативно влияют на такие важнейшие параметры цеолита, как механическая прочность и адсорбционная емкость по парам воды.

Технический результат настоящего изобретения заключается в повышении механической прочности и адсорбционной емкости по парам воды синтетического цеолита типа A и в снижении себестоимости его изготовления.

Раскрытие изобретения

Указанный технический результат достигается тем, что в известном способе получения синтетического цеолита типа A, включающем смешивание природного глинистого минерала - каолина с порообразователем и предварительно прокаленным порошковым каолином, добавление в полученную смесь жидкости до получения однородной массы, формование гранул, промежуточную сушку гранул, термоактивацию гранул, гидротермальную кристаллизацию в щелочном растворе, промывку и заключительную сушку, в качестве порообразователя используют алюмосиликатные нанотрубки, соответствующие по составу минералу каолиниту, или их смесь с древесной мукой. Порошковый каолин предварительно прокаливают при 550-700°C и вводят в смесь в количестве 10-30%. В качестве жидкости в полученную смесь добавляют пластифицирующий раствор, промежуточную сушку гранул осуществляют при температуре 95-145°C. Термоактивацию гранул проводят при температуре 550-700°C. Гидротермальную кристаллизацию раствором гидрооксида натрия осуществляют, при отношении жидкая фаза: твердая фаза равном 2,5-5,0.

Существует вариант, в котором в качестве пластифицирующего раствора в исходную смесь добавляют 0,03-0,3% раствор флокулянта «Fennopol».

Существует также вариант, в котором в качестве пластифицирующего раствора используют коллоидный раствор алюмосиликатных трубок (АНТ) в воде, в котором алюмосиликатные трубки находятся в количестве 0,1-24%.

Предлагаемый способ получения синтетического цеолита типа A, включающий получение цеолита NaA, реализуется следующим образом.

Пример 1. Данный пример иллюстрирует реализацию способа получения синтетического цеолита типа А из каолина, алюмосиликатных нанотрубок АНТ, взятыми в количестве 0,1%, прокаленного порошка каолина, взятого в количестве 20%. В качестве жидкости для получения формовочной массы использовали 0,1% раствор флокулянта «Fennopol» (Fennopol N 200, производитель «KEMIRA», Финляндия) в воде.

Гидротермальную кристаллизацию проводили в 4,1 N растворе гидрооксида натрия при отношении жидкая фаза : твердая фаза = 3,8.

В смеситель Z-образный (марка ЗЛ-1,0, производитель ЗАО «Феникс», г. Дзержинск) загружали 240,0 г. каолина и 0,4 г алюмосиликатных нанотрубок АНТ В примерах использованы алюмосиликатные нанотрубки производства закрытого акционерного общества «Нанотехнологии и инновации» (www.ntii.ru), изготовленные по Техническим условиям ТУ 57 2920-001-17527415-12. «КАОЛИН ТРУБЧАТЫЙ ОБОГАЩЕННЫЙ». Алюмосиликатные нанотрубки представляют собой неорганический материал соответствующий по своему составу минералу каолинит Al2O3·2SiO2·2H2O. Внешний диаметр трубок 50-140 нм, внутренний диаметр 10-60 нм, длина 300-3000 нм; основной состав - оксид кремния и оксид алюминия. Смесь перемешивали 15 минут. Затем добавли 61 г порошкового каолина, предварительно прокаленного при температуре 650°C, и дополнительно перемешивали 15 минут.

Далее добавляли 0,1% раствор флокулянта «Fennopol» в воде и перемешивали до получения однородной пластичной массы.

Затем осуществляли формование, используя гранулятор шнековый (марки ФШ-004, производитель ЗАО «Феникс», г. Дзержинск), получая гранулы диаметром 3,0 мм. Далее гранулы сушили при температуре 130°С в лабораторном сушильном шкафу в течение 3-х часов.

Высушенные гранулы подвергали термической активации в камерной муфельной печи при температуре 650°C и охлаждали до температуры 25-30°C. Аморфные гранулы после прокалки, в количестве 200 г. помещали в лабораторный кристаллизатор с электрообогревом и терморегулятором, и заливали 760 мл 4,1 N раствора гидрооксида натрия, при температуре 20-30°C, затем температура повышалась до 70-90°C и реакционная масса выдерживалась 24 часа.

Полученный цеолит промывался умягченной водой 4 раза.

У готового образца методом рентгеноструктурного анализа определяли тип кристаллической решетки и массовое содержание кристаллической фазы. Механическую прочность на раздавливание определяли на приборе ИПГ-1М. Динамическую емкость по парам воды определяли на лабораторной установке. Построение кривой осушки вели до точки росы минус 70°C.

Физико-химические характеристики цеолита, полученного в примере 1, и контрольного образца, полученного по технологии прототипа, приведены в таблице 1.

Всего в соответствии с предложенным способом было изготовлено и исследовано 106 образцов (примеров) синтетического цеолита типа A. Ниже приведена обобщенная характеристика отдельных групп этих примеров:

- примеры 1-7 показывают реализацию настоящего изобретения по способу получения синтетического цеолита типа A, методом термической активации гранул, полученных из смеси порошкового каолина, с алюмосиликатными нанотрубками АНТ, взятыми в количестве 0,1-24%, и каолином, предварительно прокаленным при температуре 650°C, вводимым в смесь, в количестве 20% с последующей гидротермальной кристаллизацией при соотношении жидкая: твердая фаза 3,8. В качестве жидкости для получения формовочной массы использовали 0,1% раствор флокулянта «Fennopol» (Fennopol N 200, производитель «KEMIRA», Финляндия) в воде. В примерах использованы алюмосиликатные нанотрубки производства закрытого акционерного общества «Нанотехнологии и инновации» (www.ntii.ru), изготовленные по Техническим условиям ТУ 57 2920-001-17527415-12. «КАОЛИН ТРУБЧАТЫЙ ОБОГАЩЕННЫЙ». Алюмосиликатные нанотрубки представляют собой неорганический материал соответствующий по своему составу минералу каолинит Al2O3·2SiO2·2H2O. Внешний диаметр трубок 50-140 нм, внутренний диаметр 10-60 нм, длина 300-3000 нм; основной состав - оксид кремния и оксид алюминия;

- примеры 8-25 показывают реализацию настоящего изобретения по способу получения синтетического гранулированного цеолита типа A, методом термической активации гранул, полученных из смеси порошкового каолина, с древесной мукой (по ГОСТ 16361-87, Марка 180, размер частиц 0,03 мм-0,20 мм), взятой в количестве от 0,1 до 12%, и алюмосиликатными нанотрубками, взятыми в количестве от 0,1 до 15%, и каолином, предварительно прокаленным при температуре 650°C, вводимым в смесь, в количестве 20% с последующей гидротермальной кристаллизацией при соотношении жидкая: твердая фаза 3,8. В качестве жидкости для получения формовочной массы использовали 0,1% раствор флокулянта «Fennopol» (Fennopol N 200, производитель «KEMIRA», Финляндия) в воде;

- примеры 26-46 показывают реализацию настоящего изобретения по способу получения синтетического цеолита типа А по примерам 1, 2, 4, 5, 7, 8, 11, 13, 14, 17, 19, 20,23, 24, 25, отличающиеся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок в воде, в котором алюмосиликатные нанотрубки находятся в количестве от 0,1 до 24%;

- примеры 47-51 показывают реализацию настоящего изобретения по примерам 29, 32, 40, 43, 46, отличающиеся тем, что гидротермальную кристаллизацию гидрооксидом натрия проводят в два этапа;

- примеры 52-56 показывают реализацию настоящего изобретения по примерам 29, 32, 40, 43, 46, отличающиеся тем, что гидротермальную кристаллизацию гидрооксидом натрия проводят в три этапа;

- примеры 57-61 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что порошковый каолин прокаливают при температуре 550°C;

- примеры 62-66 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что порошковый каолин прокаливают при температуре 700°C;

- примеры 67-71 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что термоактивацию гранул проводят при температуре 550°C;

- примеры 72-76 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что термоактивацию гранул проводят при температуре 700°C;

- примеры 77-81 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что промежуточную сушку гранул осуществляют при температуре 95°C;

- примеры 82-86 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что промежуточную сушку гранул осуществляют при температуре 145°C;

- примеры 87-91 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что порошковый каолин вводят в смесь в количестве 10%;

- примеры 92-96 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что порошковый каолин вводят в смесь в количестве 30%;

- примеры 97-101 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что гидротермальную кристаллизацию гидрооксидом натрия проводят, при отношении жидкая фаза: твердая фаза равном 2,5;

- примеры 102-106 показывают реализацию настоящего изобретения по примерам 52, 53, 54, 55, 56, отличающиеся тем, что гидротермальную кристаллизацию гидрооксидом натрия проводят, при отношении жидкая фаза: твердая фаза равном 5,0;

Подробное описание каждого из примеров приведено ниже.

Пример 2. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 1% алюмосиликатных нанотрубок.

Пример 3. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 3% алюмосиликатных нанотрубок.

Пример 4. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 7% алюмосиликатных нанотрубок.

Пример 5. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 12% алюмосиликатных нанотрубок.

Пример 6. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 17% алюмосиликатных нанотрубок.

Пример 7. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 24% алюмосиликатных нанотрубок.

Пример 8. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 3% древесной муки и 0,1% нанотрубок АНТ.

Пример 9. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 8, отличающийся тем, что в данном примере в исходную смесь вводили 1% нанотрубок АНТ.

Пример 10. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 8, отличающийся тем, что в данном примере в исходную смесь вводили 3% нанотрубок АНТ.

Пример 11. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 8, отличающийся тем, что в данном примере в исходную смесь вводили 7% нанотрубок АНТ.

Пример 12. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 8, отличающийся тем, что в исходную смесь вводили 12% нанотрубок АНТ.

Пример 13. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 8, отличающийся тем, что в исходную смесь вводили 15% нанотрубок АНТ.

Пример 14. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в данном примере в исходную смесь вводили 7% древесной муки и 0,1% нанотрубок АНТ.

Пример 15. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 14, отличающийся тем, что в исходную смесь вводили 1% нанотрубок АНТ.

Пример 16. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 14, отличающийся тем, что в исходную смесь вводили 3% нанотрубок АНТ.

Пример 17. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 14, отличающийся тем, что в исходную смесь вводили 7% нанотрубок АНТ.

Пример 18. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 14, отличающийся тем, что в исходную смесь вводили 12% нанотрубок АНТ.

Пример 19. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 14, отличающийся тем, что в исходную смесь вводили 15% нанотрубок АНТ.

Пример 20. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в исходную смесь вводили 12% древесной муки и 0,1% нанотрубок АНТ.

Пример 21. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 20, отличающийся тем, что в исходную смесь вводили 1% нанотрубок АНТ.

Пример 22. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 20, отличающийся тем, что в исходную смесь вводили 3% нанотрубок АНТ.

Пример 23. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 20, отличающийся тем, что в исходную смесь вводили 7% нанотрубок АНТ.

Пример 24. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 20, отличающийся тем, что в исходную смесь вводили 12% нанотрубок АНТ.

Пример 25. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 20, отличающийся тем, что в исходную смесь вводили 15% нанотрубок АНТ.

Пример 26. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 2, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 0,1%.

Пример 27. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 5, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 0,1%.

Пример 28. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 7, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 0,1%.

Пример 29. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 30. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 5, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 31. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 7, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 32. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 1, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 24,0%.

Пример 33. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 4, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 24,0%.

Пример 34. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 5, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 24,0%.

Пример 35. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 8, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 0,1%.

Пример 36. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 14, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 0,1%.

Пример 37. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 20, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 0,1%.

Пример 38. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 11, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 39. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 17, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 40. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 23, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 41. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 13, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 42. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 19, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 43. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 25, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 12,0%.

Пример 44. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 8, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 24,0%.

Пример 45. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 17, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 24,0%.

Пример 46. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 24, отличающийся тем, что в качестве жидкости в полученную исходную смесь добавляют коллоидный раствор нанотрубок АНТ в воде, в котором алюмосиликатные нанотрубки находятся в количестве 24,0%.

Пример 47. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 29, отличающийся тем, что гидротермальную кристаллизацию проводят в два этапа, первый этап осуществляют при температуре 15-35°C, второй этап проводят при температуре 75-100°C.

Пример 48. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 32, отличающийся тем, что гидротермальную кристаллизацию проводят в два этапа, первый этап осуществляют при температуре 15-35°C, второй этап проводят при температуре 75-100°C.

Пример 49. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 40, отличающийся тем, что гидротермальную кристаллизацию проводят в два этапа, первый этап осуществляют при температуре 15-35°C, второй этап проводят при температуре 75-100°C.

Пример 50. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 43, отличающийся тем, что гидротермальную кристаллизацию проводят в два этапа, первый этап осуществляют при температуре 15-35°C, второй этап проводят при температуре 75-100°C.

Пример 51. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 46, отличающийся тем, что гидротермальную кристаллизацию проводят в два этапа, первый этап осуществляют при температуре 15-35°C, второй этап проводят при температуре 75-100°C.

Пример 52. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 29, отличающийся тем, что гидротермальную кристаллизацию проводят в три этапа, первый этап осуществляют при температуре 20-30°C, второй этап проводят при температуре 31-55°C, третий этап осуществляют при температуре 56-100°C.

Пример 53. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 32, отличающийся тем, что гидротермальную кристаллизацию проводят в три этапа, первый этап осуществляют при температуре 20-30°C, второй этап проводят при температуре 31-55°C, третий этап осуществляют при температуре 56-100°C.

Пример 54. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 40, отличающийся тем, что гидротермальную кристаллизацию проводят в три этапа, первый этап осуществляют при температуре 20-30°C, второй этап проводят при температуре 31-55°C, третий этап осуществляют при температуре 56-100°C.

Пример 55. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 43, отличающийся тем, что гидротермальную кристаллизацию проводят в три этапа, первый этап осуществляют при температуре 20-30°C, второй этап проводят при температуре 31-55°C, третий этап осуществляют при температуре 56-100°C.

Пример 56. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 46, отличающийся тем, что гидротермальную кристаллизацию проводят в три этапа, первый этап осуществляют при температуре 20-30°C, второй этап проводят при температуре 31-55°C, третий этап осуществляют при температуре 56-100°C.

Пример 57. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 550°C.

Пример 58. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 550°C.

Пример 59. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 550°C.

Пример 60. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 550°C.

Пример 61. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 550°C.

Пример 62. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 700°C.

Пример 63. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 700°C.

Пример 64. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 700°C.

Пример 65. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 700°C.

Пример 66. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что порошковый каолин предварительно прокаливают при температуре 700°C.

Пример 67. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что термоактивацию гранул проводят при температуре 550°C.

Пример 68. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что термоактивацию гранул проводят при температуре 550°C.

Пример 69. Данный пример иллюстрирует получение сирнетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что термоактивацию гранул проводят при температуре 550°C.

Пример 70. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что термоактивацию гранул проводят при температуре 550°C.

Пример 71. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что термоактивацию гранул проводят при температуре 550°C.

Пример 72. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что термоактивацию гранул проводят при температуре 700°C.

Пример 73. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что термоактивацию гранул проводят при температуре 700°C.

Пример 74. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что термоактивацию гранул проводят при температуре 700°C.

Пример 75. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что термоактивацию гранул проводят при температуре 700°C.

Пример 76. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что термоактивацию гранул проводят при температуре 700°C.

Пример 77. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что промежуточную сушку гранул проводят при температуре 95°C.

Пример 78. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что промежуточную сушку гранул проводят при температуре 95°C.

Пример 79. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что промежуточную сушку гранул проводят при температуре 95°C.

Пример 80. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что промежуточную сушку гранул проводят при температуре 95°C.

Пример 81. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что промежуточную сушку гранул проводят при температуре 95°C.

Пример 82. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что промежуточную сушку гранул проводят при температуре 145°C.

Пример 83. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что промежуточную сушку гранул проводят при температуре 145°C.

Пример 84. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что промежуточную сушку гранул проводят при температуре 145°C.

Пример 85. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что промежуточную сушку гранул проводят при температуре 145°C.

Пример 86. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что промежуточную сушку гранул проводят при температуре 145°C.

Пример 87. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что порошковый каолин вводят в смесь в количестве 10%.

Пример 88. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что порошковый каолин вводят в смесь в количестве 10%.

Пример 89. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что порошковый каолин вводят в смесь в количестве 10%.

Пример 90. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что порошковый каолин вводят в смесь в количестве 10%.

Пример 91. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что порошковый каолин вводят в смесь в количестве 10%.

Пример 92. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что порошковый каолин вводят в смесь в количестве 30%.

Пример 93. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что порошковый каолин вводят в смесь в количестве 30%.

Пример 94. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что порошковый каолин вводят в смесь в количестве 30%.

Пример 95. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что порошковый каолин вводят в смесь в количестве 30%.

Пример 96. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что порошковый каолин вводят в смесь в количестве 30%.

Пример 97. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 2,5.

Пример 98. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 2,5.

Пример 99. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 2,5.

Пример 100. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 2,5.

Пример 101. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 2,5.

Пример 102. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 52, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 5,0.

Пример 103. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 53, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 5,0.

Пример 104. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 54, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 5,0.

Пример 105. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 55, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 5,0.

Пример 106. Данный пример иллюстрирует получение синтетического гранулированного цеолита типа A, аналогично примеру 56, отличающийся тем, что гидротермальную кристаллизацию раствором гидрооксида натрия проводят, при отношении жидкая фаза : твердая фаза равном 5,0.

Пояснения к лабораторным испытаниям образцов адсорбента, полученных согласно примерам 1-106

1. Тип цеолита NaA и массовое содержание кристаллической фазы определяли методом дифференциальной рентгеновской спектроскопии на аппарате ДРОН-4;

2. Динамическую активность по воде определяли на лабораторной установке из среды атмосферного воздуха. Концентрацию паров воды в осушенном воздухе регистрировали гигрометром типа ИВГ-М;

Примеры результатов лабораторных испытаний образцов заявленного изобретения и контрольного образца (прототипа) приведены в таблице 1.

Согласно результатов испытаний образцов, полученных в примерах 1-106 установлено:

- полученный цеолит соответствует кристаллической структуре цеолита типа A (LTA).

полученный цеолит обладает высокой механической прочностью и адсорбционной емкостью по парам воды

- механическая прочность гранул цеолита растет при увеличении содержания наноразмерного поробразователя АНТ в исходной смеси от 0,1 до 24%;

- увеличение содержания АНТ в исходной смеси от 0,1 до 12% увеличивает динамическую емкость цеолита по воде с 14,0 до 20,1 г\100 г;

- температура прокалки порошкового цеолита вводимого в смесь и температура термоактивации гранул оказывает влияние на физико-химические свойства полученных образцов, согласно примеров, приведенных в таблице 1;

- соотношение жидкая: твердая фаза на стадии гидротермальной кристаллизации для получения цеолита типа A с высокими физико-химическими показателями должно находится в интервале 3,8-5,0.

Использование предлагаемого способа получения синтетического цеолита типа A обеспечивает по сравнению с существующими способами получение синтетического цеолита типа A, обладающего более высокой механической прочностью и адсорбционной емкостью по парам воды и снижение себестоимости изготовления синтетического цеолита типа A, так как в качестве материала для получения цеолита используется только каолин и прокаленный каолин, а дорогостоящая добавка - порошковый цеолит типа A не используется.

Источник поступления информации: Роспатент

Показаны записи 21-29 из 29.
10.01.2015
№216.013.17ac

Устройство травления поверхности для металлографического анализа

Изобретение относится к устройству травления поверхности для металлографического анализа образцов. Устройство включает ячейку для протравливания и средства, изолирующие протравливаемую зону от окружающих областей поверхности. При этом в ячейку включены средства для крепления к протравливаемому...
Тип: Изобретение
Номер охранного документа: 0002537488
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b48

Сканирующий зондовый микроскоп с устройством для функционирования многозондового датчика

Изобретение относится к области сканирующей зондовой микроскопии. Микроскоп с устройством включает платформу (1), держатель образца (2) с образцом (3), установленные на сканирующем устройстве (4), сопряженном с платформой (1), блок сближения (5), систему регистрации (6), состоящую из источника...
Тип: Изобретение
Номер охранного документа: 0002538412
Дата охранного документа: 10.01.2015
20.08.2015
№216.013.7001

Многофункциональный оптический коррелятор для обработки потока информации

Изобретение может быть использовано для опознавания сигнала в потоке информации и преобразования формы оптических импульсов. Коррелятор содержит блок для формирования потока оптической информации и блок для обработки потока оптической информации. Блок для обработки потока оптической информации...
Тип: Изобретение
Номер охранного документа: 0002560243
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7145

Способ введения целевых молекул в клетки

Изобретение относится к области биохимии. Предложен способ введения целевых молекул в клетки. Способ включает закрепление на культуральной подложке в питательной среде массива рабочих клеток, а также введение целевых молекул в массив рабочих клеток путем прокола клеточной мембраны. Целевые...
Тип: Изобретение
Номер охранного документа: 0002560567
Дата охранного документа: 20.08.2015
20.10.2015
№216.013.852e

Цеолитный адсорбент

Изобретение относится к получению цеолитных адсорбентов. Предложены варианты гранулированного цеолитного адсорбента, содержащего в поверхностном слое гранул глубиной 5-300 микрон кристаллическую фазу цеолита типа А. Различные варианты адсорбента характеризуются специфическим содержанием в...
Тип: Изобретение
Номер охранного документа: 0002565697
Дата охранного документа: 20.10.2015
13.01.2017
№217.015.66db

Многозондовый датчик контурного типа для сканирующего зондового микроскопа

Изобретение относится к области сканирующей зондовой микроскопии и может использоваться в условиях ограниченного доступа к зондам, например, в вакууме или агрессивной среде. Многозондовый датчик контурного типа содержит основание, на котором по внешнему контуру первыми концами закреплены...
Тип: Изобретение
Номер охранного документа: 0002592048
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.688f

Устройство манипулирования

Устройство манипулирования относится к области точной механики и может быть использовано для точного перемещения объектов, например, в зондовой микроскопии. Заявленное устройство манипулирования включает основание (1) с блоком направляющих, на котором установлена подвижная каретка (2),...
Тип: Изобретение
Номер охранного документа: 0002591871
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.be64

Сканирующий зондовый микроскоп для оптической спектрометрии

Изобретение предназначено для оптической микроскопии и спектрометрии комбинационного рассеяния, люминесценции или флуоресценции с использованием зондового датчика в качестве оптической антенны. Микроскоп содержит основание 1, измерительную головку 2, зондовый датчик 3, держатель зондового...
Тип: Изобретение
Номер охранного документа: 0002616854
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c444

Фармацевтическая композиция, обладающая бактерицидной и противогрибковой активностью, и способ ее получения

Изобретение относится к области медицины, фармацевтики и нанотехнологий. Предлагается фармацевтическая композиция, обладающая антимикробной и противогрибковой активностью, содержащая трийодметан, нанесенный на алюмосиликатные нанотрубки с внешним диаметром трубок - 60-160 нм, внутренним...
Тип: Изобретение
Номер охранного документа: 0002618450
Дата охранного документа: 03.05.2017
Показаны записи 31-35 из 35.
29.06.2019
№219.017.9ff3

Способ получения цеолитного адсорбента структуры ах и цеолитный адсорбент структуры ах

Изобретение относится к химической промышленности, конкретно к получению модифицированных цеолитных сорбентов структуры АХ. Предложены два варианта способа получения цеолитного адсорбента структуры АХ, которые включают обработку цеолитов типов NaA и NaX раствором хлористого кальция,...
Тип: Изобретение
Номер охранного документа: 0002450970
Дата охранного документа: 20.05.2012
12.07.2019
№219.017.b323

Способ измерения рельефа поверхности объекта с использованием сканирующего зондового микроскопа

Изобретение относится к области сканирующей зондовой микроскопии. Способ включает первое сканирование поверхности объекта с регистрацией сигнала вертикальных перемещений сканера и сигнала взаимодействия зонда с объектом, второе сканирование поверхности объекта в обратном направлении с...
Тип: Изобретение
Номер охранного документа: 0002329465
Дата охранного документа: 20.07.2008
21.01.2020
№220.017.f7a9

Композиционная проволока для дуговой наплавки

Изобретение относится к наплавочным материалам, в частности к порошковым и композиционным проволокам для дуговой наплавки. Композиционная проволока состоит из никелевой оболочки, внутри которой находятся проволочные компоненты из алюминия, вольфрама, молибдена, лента из тантала и...
Тип: Изобретение
Номер охранного документа: 0002711286
Дата охранного документа: 16.01.2020
21.05.2020
№220.018.1f5d

Фармацевтическая композиция, обладающая антимикробной и противогрибковой активностью

Настоящее изобретение относится к области медицины, в частности к фармацевтике, а именно к фармацевтической композиции на основе трийодметана и алюмосиликатного носителя в соотношении трийодметан - 0.5-45 мас. %, алюмосиликатный носитель - 55-99.5 мас. %. Предлагаемые композиции эффективны для...
Тип: Изобретение
Номер охранного документа: 0002721281
Дата охранного документа: 18.05.2020
15.05.2023
№223.018.57f7

Способ двухэлектродной дуговой наплавки

Изобретение относится к автоматизированной дуговой наплавке в среде защитных газов двумя проволоками сплошного сечения и может использоваться при производстве нефтехимического оборудования в технологических операциях по плакированию изделий коррозионно-стойкими слоями металла. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002767334
Дата охранного документа: 17.03.2022
+ добавить свой РИД