×
27.07.2014
216.012.e528

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА

Вид РИД

Изобретение

Аннотация: Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, при этом установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения. Технический результат: обеспечение возможности определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона. 9 ил.
Основные результаты: Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида: (Z - аналитический параметр для элемента i; E - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(E) - измеренная интенсивность характеристического излучения, соответствующая энергии E; I(E) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента E; I(E) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, I(E) - рассчитанная интенсивность фона некогерентно рассеянного излучения),где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле: (E - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, I - интенсивность характеристического излучения в точке спектра с энергией E+ΔE).

Изобретение относится к способу определения концентрации элемента (элементов), основанному на измерении характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность.

Изобретение относится к методам неразрушающего контроля элементного состава вещества и реализуется в методах волнового и энергодисперсионного рентгенофлуоресцентного анализа.

Флуоресцентная эмиссия рентгеновских лучей является одним из наиболее мощных средств обнаружения и количественного определения элементов практически в любом фазовом состоянии сложного вещественного состава [Юинг Г. Инструментальные методы химического анализа. М.: Мир, 1989, 608 с.]. Учитывая, что структура и плотность матрицы влияет на интенсивность характеристической линии элемента, для определения концентрации элемента в образце сложного химического и фазового состава необходим набор стандартных образцов, имеющих фазовую структуру, идентичную структуре анализируемого образца, что не всегда технически и аналитически выполнимо.

Известен способ определения тяжелых металлов в породах и рудах по их характеристическому рентгеновскому излучению, возбуждаемому гамма-квантами рентгеновской трубки или другого источника излучения. Для уточнения влияния плотности матрицы, сокращения количества измерений и упрощения методики их проведения в условиях естественного залегания пород и руд производят одновременное измерение интенсивностей вторичного излучения в двух участках спектра, расположенных по разные стороны от К (L)-края поглощения искомого элемента (SU 171482, опубл. 26.05.1965).

Содержание искомого элемента находят по величине отношения интенсивностей в двух указанных участках спектра вторичного излучения. С целью определения нескольких элементов производят одновременное измерение интенсивностей вторичного излучения в участках спектра, расположенных по разные стороны от К (L)-краев поглощения каждого элемента. Недостатком указанного способа является нелинейная зависимость интенсивности вторичного рентгеновского излучения от концентрации элемента, что снижает точность анализа, а следовательно, недостаточно достоверная информация об анализируемом веществе.

Известен способ определения концентрации элемента и кристаллической фазы, куда входит определяемый элемент, в веществе сложного химического состава, включающий облучение пробы анализируемого вещества монохроматическим рентгеновским излучением, регистрацию интенсивности когерентно рассеянного определяемой кристаллической фазой первичного излучения. В способе предусматривается одновременная или последовательная регистрация интенсивности когерентно рассеянного излучения с интенсивностью некогерентного рассеянного первичного излучения этой же пробой, а затем по отношению указанных интенсивностей устанавливается концентрация определяемой фазы (RU 2255328, опубл. 27.06.2005).

Данный способ объединяет два направления: рентгеноспектральный и рентгенофазовый анализ. В рентгеноспектральном анализе определяется концентрация того или иного элемента, в рентгенофазовом анализе определяется концентрация той или иной фазы. Для реализации метода использовалось совершенно разное оборудование, основанное на разных физических принципах - рентгеновские спектрометры для рентгеноспектрального анализа и рентгеновские дифрактометры для рентгенофазового анализа. Способ позволяет снизить влияние химического и фазового состава пробы на ошибку измерения, однако не позволяет получить точную информацию о количестве анализируемого элемента, входящего в определяемую фазу.

Известен способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава (патент RU 2362149, опубл. 20.07.2009 г.), выбран в качестве прототипа, описывающий способ определения концентрации элемента и фазы в веществах сложного химического состава. Отличительной особенностью способа является то, что одновременно регистрируют интенсивность характеристического излучения определяемого элемента, его определяемой фазы и интенсивность когерентно и некогерентно рассеянного (по Комптону) излучений, а затем по отношению указанных интенсивностей определяют концентрации элемента и фазы, включающей данный элемент, что позволяет учитывать влияние вещественного состава на результаты анализа (матричный эффект). Предлагаемый способ основывается на методе спектральных отношений при рентгенофлуоресцентном анализе и разработанном автором способе определения концентрации фазы при рентгенофазовом анализе.

Автор утверждает, что отношение интенсивности аналитической линии Ii к интенсивности некогерентно рассеянному излучению Inc не зависит от матрицы пробы и может использоваться как аналитический параметр Ki . Однако метод, принятый в качестве прототипа, не учитывает влияние фона характеристического излучения, возникающего вследствие облучения пробы первичным потоком гамма-квантов, что вносит существенную погрешность в нахождение концентраций определяемых элементов [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.148, 208 с.].

Интенсивность фона, зависящая от структуры и состава пробы, пропорциональна интенсивности характеристического излучения, возбуждаемого первичным потоком рентгеновского излучения трубки или другого источника. В то же время интенсивность фона некогерентно рассеянного излучения пропорциональна интенсивности некогерентно рассеянных квантов первичного излучения с соответствующей энергией (длиной волны), зависящей от материала анода рентгеновской трубки [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.140, с.147, с.149, 208 с.].

Влияние фона можно не учитывать только в том случае, когда химический и фазовый состав анализируемых материалов является постоянным. Если же состав проб изменяется, то при их анализе интенсивность фона для каждого образца следует измерять рядом с аналитической линией, что является трудоемкой операцией и не всегда возможно в силу конволюции спектров характеристического излучения.

Техническим результатом настоящего изобретения является возможность определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона.

Технический результат достигается тем, что способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения проводят по аналитическому параметру вида , учитывающему влияние фона характеристического излучения, что позволяет привести к линейной зависимости измеряемых величин интенсивности характеристического излучения от концентрации каждого определяемого элемента в пробе сложного химического и фазового состава и тем самым значительно повысить точность анализа.

В формуле расчета аналитического параметра Zi для i-го элемента приняты следующие обозначения: Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Нормирование скорректированной интенсивности аналитической линии к интенсивности некогерентно рассеянного излучения не зависит от матрицы пробы (вещественного состава, плотности и фазового состояния) и используется как аналитический параметр.

Для определения аналитических параметров в заявляемом способе проводят следующие операции:

1. Измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения.

2. По измеренному спектру рассчитывают интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, по формуле:

,

где Iфона(Ei) - интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента, Emin,i - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, IEmin,i+ΔE - интенсивность характеристического излучения в точке спектра с энергией Emin,i+ΔE.

3. По рассчитанной в п.2 интенсивности фона определяют скорректированную интенсивность для каждого i-го элемента по формуле:

Ji=(I(Ei)-Iфона(Ei))2,

где Ji - скорректированная интенсивность аналитической линии элемента i, I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной энергии Emin,i для i-го элемента.

4. По отношению интенсивностей аналитических линий элемента и некогерентно рассеянного излучения с учетом интенсивности фона рассчитывают аналитический параметр Zi для элемента i

где I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона, кратная энергии Emin,i для i-го элемента, I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Используя вместо измеряемых величин интенсивности характеристического излучения аналитический параметр Zi, получаем линейную зависимость аналитического параметра Zi от содержания i-го элемента в пробе:

Zi=aiCi+bi,

где ai и bi - коэффициенты пропорциональности, определяемые методом наименьших квадратов при построении калибровочных зависимостей для i-го элемента, Ci - концентрация элемента i в пробе.

Таким образом, вместо уравнения, связывающего интенсивность характеристического излучения i-го элемента с его концентрацией, используется зависимость аналитического параметра Zi от концентрации i-го элемента, что позволяет получить предельную линейную зависимость, устраняя влияние других элементов, входящих в пробу вещества сложного состава.

На фиг.1 приведена зависимость интенсивности I линии La элемента церия от его концентрации в растворе, на фиг.2 - линейная зависимость аналитического параметра Z для тех же образцов.

На фиг.2 видно, что введение параметра Z позволяет провести линеаризацию зависимости измеряемых величин от концентрации, что существенно повышает точность рентгенофлуоресцентного анализа.

На фиг.3 приведены зависимости интенсивности некогерентно рассеянного излучения от концентрации Ce в растворах и в твердой фазе (порошки). Изменение интенсивности некогерентно рассеянного излучения в растворах и порошках учитывается эквивалентным выражением, что показывает возможность учета влияния матрицы для проб различной структуры.

Техническая реализация предлагаемого способа осуществима на энергодисперсионных спектрометрах и спектрометрах с волновой дисперсией. При этом в качестве регистрирующего устройства могут использоваться полупроводниковые детекторы, кристаллы-сцинтилляторы, газоразрядные трубки и pin-диоды.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. Количественное определение фосфата церия в концентрате фосфатов редкоземельных элементов. Используемое оборудование: энергодисперсионный рентгеновский спектрометр РЕАН; условия измерения - Uycк - 40 кВ, Iанод - 100 мкА; материал анода - Мо; время экспозиции - 100 с; среда измерения - воздух; детектор некогерентно рассеянного излучения Si-pin-диод (16,57 кэВ).

Приготовлен массив градуировочных проб разбавлением химически чистого CePO4 продуктом моноаммонийфосфата (МАФ) дигидратного сернокислотного производства фосфорной кислоты с диапазоном концентраций по церию: 0,1-11,0%, 11-53,6%.

Объект анализа - гомогенизированный порошок разбавленного фосфата церия, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм, искомый элемент-аналит - церий. Полученные зависимости интенсивности Lα линии церия от концентрации элемента (%) и интенсивности некогерентно рассеянного излучения от концентрации Ce (%) представлены фиг.4 и 5.

Введение аналитического параметра Zi с учетом интенсивности фона для Lα линии церия позволяет получить линейные зависимости как для низких, так и для высоких концентраций данного элемента, представленные на фиг.6.

Пример 2. Количественное определение редкоземельных элементов (РЗЭ) в модельных смесях. Используемое оборудование: рентгеновский спектрометр «Спектроскан G»; условия измерения - Uуск - 40 кВ, Iанод - 100 мкА; материал анода - Ag; время экспозиции - 5 с; среда измерения - воздух; (16,57 кэВ); длина волны некогерентного рассеяния - 605 mÅ.

Приготовлен массив градуировочных проб разбавлением химически чистых нитратов РЗЭ продуктом МАФ. Объект анализа - гомогенизированный порошок разбавленных нитратов РЗЭ, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм. Элементы-аналиты - La, Er, Eu с диапазоном концентраций по лантану: 0,04-3%; по эрбию: 0,03-1%; по европию: 0,1-4%.

Использование аналитического параметра Zi с учетом интенсивности фона позволяет получить линейные зависимости для каждого элемента-аналита: лантана, эрбия и европия, от их концентрации в совместном присутствии. Полученные линейные зависимости аналитического параметра Zi от концентрации для характеристических линий Lα La, Lα Er и Lα Eu представлены на фиг.7, 8, 9.

Изобретение может быть использовано в различных отраслях промышленности для решения следующих задач:

- определение элементного состава руд, минералов, промышленных и товарных продуктов горнодобывающей промышленности;

- определение элементного состава природных и сточных вод, промышленных технологических растворов;

- исследование продуктов лабораторного и промышленного синтеза неорганических структур.

Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида: (Z - аналитический параметр для элемента i; E - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(E) - измеренная интенсивность характеристического излучения, соответствующая энергии E; I(E) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента E; I(E) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, I(E) - рассчитанная интенсивность фона некогерентно рассеянного излучения),где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле: (E - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, I - интенсивность характеристического излучения в точке спектра с энергией E+ΔE).
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 172.
27.12.2014
№216.013.141d

Бункер-пылеподавитель

Изобретение относится к погрузочно-разгрузочным работам, в частности к загрузке вагонов и конвейеров пылящими материалами, и может быть использовано в горной, химической и пищевой промышленности при хранении, транспортировке и погрузке/выгрузке пылящих материалов и направлено на уменьшение...
Тип: Изобретение
Номер охранного документа: 0002536573
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14a0

Устройство заряда накопительного конденсатора

Использование: в области электротехники. Технический результат - повышение эффективности заряда. В состав устройства для заряда накопительного конденсатора, содержащего трехфазный источник питания, три токоограничивающе-дозирующих элемента в виде катушек индуктивности, трехфазный мостовой...
Тип: Изобретение
Номер охранного документа: 0002536704
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f2

Устройство для определения величины коэффициента трения сыпучего груза о грузонесущей орган транспортной машины

Изобретение относится к устройствам определения физико-механических свойств транспортируемых грузов. Устройство для определения величины коэффициента трения сыпучего груза о грузонесущий орган транспортной машины содержит размещенную на опорной раме съемную пластину из материала грузонесущего...
Тип: Изобретение
Номер охранного документа: 0002536786
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f5

Система экологического мониторинга атмосферного воздуха горнопромышленной промагломерации

Изобретение относится к экологическим системам сбора и обработки информации и может быть использовано для прогнозирования распространения загрязнения атмосферного воздуха на территории горнопромышленной агломерации. Сущность: система содержит первую (1) и вторую (5) группы...
Тип: Изобретение
Номер охранного документа: 0002536789
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f7

Стенд для исследования энергообмена при разрушении горных пород

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд для исследования энергообмена при разрушении горных пород...
Тип: Изобретение
Номер охранного документа: 0002536791
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.156c

Комплекс для перегрузки древесных опилок с наземного склада в транспортное средство

Комплекс для перегрузки древесных опилок с наземного склада в транспортное средство состоит из П-образной в поперечном сечении рамы с вертикальными опорами и верхней поперечиной при опирании вертикальных опор на поверхность наземного грунта с помощью двух пар пневмоколес с приводами их...
Тип: Изобретение
Номер охранного документа: 0002536908
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.16e2

Нефтехранилище

Нефтехранилище содержит корпус с замкнутой в горизонтальной плоскости боковой вертикальной стенкой, плоским днищем, загрузочный и разгрузочный трубопроводы. Внутри корпуса нефтехранилища размещен плавучий на нефти плоский стальной лист минимальной толщины, полностью перекрывающий поперечное...
Тип: Изобретение
Номер охранного документа: 0002537282
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.196d

Способ стыковки рельсов железнодорожных путей и устройство для его реализации

При стыковке рельсов осуществляют фиксацию каждой пары стыкуемых рельсов от их смещения по вертикали друг относительно друга путем размещения с внутренней стороны каждой пары смежных стыкуемых рельсов между их головками и основаниями и с перекрытием смежных рельсов продольных балок. Эти балки...
Тип: Изобретение
Номер охранного документа: 0002537937
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.196e

Шахтная канатно-скреперная установка

Изобретение относится к транспортным машинам периодического действия, предназначенным для транспортирования от забоя добытой горной массы. Шахтная канатно-скреперная установка содержит скрепер ящичного типа, соединенные с ним головной и хвостовой тяговые канаты, скреперную лебедку и...
Тип: Изобретение
Номер охранного документа: 0002537938
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.196f

Перегрузочное устройство для сыпучих грузов

Перегрузочное устройство содержит боковые стенки (1, 2) и наклонное днище, выполненное в виде замкнутой на верхнем (3) и нижнем (4) барабанах прорезиненной однопрокладочной ленты (5) с арамидной основой. Верхняя ветвь ленты (5) опирается на цилиндрические ролики (6), состоящие из двух...
Тип: Изобретение
Номер охранного документа: 0002537939
Дата охранного документа: 10.01.2015
Показаны записи 71-80 из 221.
20.07.2014
№216.012.dddf

Шахтная подъемная установка

Шахтная подъемная установка содержит установленный на раме кинематически связанный с приводным блоком и тормозом приводной барабан с закрепленным на нем концом соединенного с поднимаемым сосудом стального проволочного каната, огибающего отклоняющий блок. Между отклоняющим блоком и приводным...
Тип: Изобретение
Номер охранного документа: 0002522585
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de44

Шнековая установка для добычи торфа

Изобретение относится к области разработки полезных ископаемых открытым способом, а именно к передвижным комплексам для разработки торфяных и торфолечебных залежей преимущественно в мерзлом состоянии. Техническим результатом является существенное увеличение производительности комплекса для...
Тип: Изобретение
Номер охранного документа: 0002522686
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de57

Секция подводного трубопровода

Изобретение относится к трубопроводному транспорту. Секция подводного трубопровода включает внутреннюю трубу, установленную с зазором внутри внешней трубы. Зазор заполнен закрепленным по винтовой линии на внешней стороне внутренней трубы герметизирующим устройством со сжатым воздухом и гибким...
Тип: Изобретение
Номер охранного документа: 0002522705
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df36

Способ защиты углеродной футеровки

Изобретение относится к способу защиты углеродной футеровки алюминиевого электролизера при получении алюминия из металлургического глинозема в криолит-глиноземном расплаве и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ защиты углеродной футеровки...
Тип: Изобретение
Номер охранного документа: 0002522928
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfca

Термонагружатель к стенду для испытания образцов

Изобретение относится к средствам испытаний образцов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель содержит платформу, установленные на ней фрикционный элемент, опорный элемент...
Тип: Изобретение
Номер охранного документа: 0002523076
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfd6

Стенд для исследования энергообмена при разрушении горных пород

Изобретение относится к испытательной технике, к испытаниям, преимущественно, образцов горных пород. Стенд содержит основание, соосно установленные на нем захваты образца, устройство для нагружения образца, связанное с захватами, механизм для механической обработки образца и платформу для...
Тип: Изобретение
Номер охранного документа: 0002523088
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e471

Винтовой конвейер (варианты)

Винтовой конвейер содержит размещенные в несущем желобе (1) с укрытием (2) криволинейной формы с выпуклостью, обращенной вверх, два вала (3, 4) с винтовыми поверхностями (5, 6). По первому варианту укрытие выполнено с закрепленным на его внутренней поверхности и размещенным вдоль продольной оси...
Тип: Изобретение
Номер охранного документа: 0002524271
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e473

Наклонный ленточный конвейер

Наклонный ленточный конвейер содержит ленту, опирающуюся на желобчатые роликоопоры, состоящие из двух наклонных боковых роликов (2, 3) и центрального горизонтального ролика (4). На обоих торцевых частях горизонтального ролика закреплены блоки (5, 6) с выступами (7) на их наружной поверхности,...
Тип: Изобретение
Номер охранного документа: 0002524273
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e474

Стенд для исследования и выбора параметров вибрационного конвейера с увеличенной производительностью

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя. Высота передних...
Тип: Изобретение
Номер охранного документа: 0002524274
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e475

Центрирующее устройство для конвейерной ленты

Центрирующее устройство содержит желобчатую роликоопору (1) грузонесущей ветви (2) конвейерной ленты, установленную с возможностью поворота относительно оси (3) шарнирного узла (4), закрепленной с помощью поперечной балки (5) на прогонах (6, 7) рамы конвейера. Ось шарнирного узла каждого...
Тип: Изобретение
Номер охранного документа: 0002524275
Дата охранного документа: 27.07.2014
+ добавить свой РИД