×
20.07.2014
216.012.e1e1

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФЛЮЕНСА БЫСТРЫХ НЕЙТРОНОВ ПОЛУПРОВОДНИКОВЫМ МОНОКРИСТАЛЛИЧЕСКИМ ДЕТЕКТОРОМ

Вид РИД

Изобретение

Аннотация: РЕФЕРАТ (57) Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей. Способ включает калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, при этом детектор изготавливают в форме пластины с плоскопараллельными поверхностями оснований, до и после облучения измеряют электрическое сопротивление между основаниями пластины, для чего перед измерениями на всю поверхность каждого основания пластины наносят омические контакты, а флюенс быстрых нейтронов F определяют по изменению электрической проводимости между контактами до и после облучения пластины где К - коэффициент пропорциональности, который постоянен для измеряемого спектра нейтронов и не зависит от исходного электрического сопротивления, коэффициент К определяют при калибровке детектора; d - толщина пластины; S - площадь каждого основания пластины; R, R - исходное и конечное электрические сопротивления между омическими контактами до и после облучения соответственно. Технический результат заключается в создании простого, более доступного способа детектирования флюенса быстрых нейтронов. 1 табл.
Основные результаты: Способ измерения флюенса быстрых нейтронов полупроводниковым монокристаллическим детектором, включающий калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, отличающийся тем, что детектор изготавливают в форме пластины с плоскопараллельными поверхностями оснований, до и после облучения измеряют электрическое сопротивление между основаниями пластины, для чего перед измерениями на всю поверхность каждого основания пластины наносят омические контакты, а флюенс быстрых нейтронов F определяют по изменению электрической проводимости между контактами до и после облучения пластины ,где К - коэффициент пропорциональности, который постоянен для измеряемого спектра нейтронов и не зависит от исходного электрического сопротивления, коэффициент К определяют при калибровке детектора;d - толщина пластины;S - площадь каждого основания пластины;R, R - исходное и конечное электрические сопротивления между омическими контактами до и после облучения соответственно.

Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей.

Принцип действия полупроводниковых детекторов основан на изменении электрофизических параметров полупроводников под действием излучения. При облучении быстрыми нейтронами в монокристаллах полупроводников наряду с другими типами дефектов образуются и сложные дефекты как донорного, так и акцепторного характеров, являющиеся следствием взаимодействия вакансий и междуузельных атомов между собой и с атомами исходных химических примесей. При этом введение сложных компенсирующих центров приводит к компенсации основной легирующей примеси. Это свойство полупроводников используют для измерения флюенса быстрых нейтронов.

Известен способ детектирования быстрых нейтронов, основанный на изменении падения напряжения на прямой ветви вольтамперной характеристики диода под действием быстрых нейтронов [Крамер-Агеев Е.А., Миронов Ю.А., Синицын А.Д., Трошин В.С. Нейтронные аварийные дозиметры на основе кремниевых промышленных полупроводниковых диодов. «Вопросы дозиметрии и защиты от излучений», Москва, №19, 1980, с. 61-66].

Известен также способ детектирования флюенса быстрых нейтронов полупроводниковым детектором, включающий в себя калибровку детектора, измерение электрического сопротивления детектора до облучения, облучение неизвестным флюенсом быстрых нейтронов, измерение электрического сопротивления детектора после его облучения [SU а.с. №934402, опубликовано 07.06.82, БИ №21]. При этом в качестве детектора используют кремний n-типа, например, участок легированного кремния между первой и второй базами в однопереходном транзисторе, иначе называемом двухбазовым диодом, КТ117. Формула, связывающая флюенс быстрых нейтронов с изменением межбазового сопротивления, имеет вид

R=R0·exp(K·F), (1)

где К - коэффициент пропорциональности, который определяют при калибровке каждого конкретного детектора, R0, R - межбазовое сопротивление КТ117 соответственно до и после облучения, F - флюенс быстрых нейтронов.

Основной недостаток этих способов связан со значительным разбросом исходных параметров даже у однотипных приборов серийного выпуска. Поэтому каждый такой прибор требует индивидуальной калибровки, после которой восстановление исходных параметров при высокотемпературном отжиге часто невозможно из-за разрушения внутренней структуры приборов.

Наиболее близким к заявляемому является способ измерения флюенса быстрых нейтронов полупроводниковым детектором, включающий калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами [RU №2339975, опубликовано 27.11.2008. Бюл. №33]. Формула, связывающая флюенс быстрых нейтронов F с изменением удельного электрического сопротивления, имеет вид

, (2)

где К - коэффициент пропорциональности, который постоянен для измеряемого спектра нейтронов и не зависит от исходного удельного электрического сопротивления; коэффициент К определяют при калибровке детектора; ρ0, ρ - исходное и конечное удельные электрические сопротивления полупроводника до и после облучения соответственно.

Этот способ имеет ряд преимуществ: использование в качестве детектора простого полупроводника без p-n переходов; широкий диапазон измеряемого флюенса быстрых нейтронов; одна исходная для данного спектра нейтронов калибровка детектора с любым исходным удельным сопротивлением.

Основным недостатком прототипа является необходимость в наличие достаточно сложной и дорогостоящей установки для измерения удельного электрического сопротивления полупроводниковых монокристаллов. Чаще всего для этих целей используют установки с четырехзондовым методом измерений. Для обслуживания установки и проведения корректных измерений удельного электрического сопротивления необходимы соответствующее помещение, наличие эталонов для калибровки этой установки и соответствующая квалификация обслуживающего персонала.

Техническим результатом изобретения является упрощение способа детектирования флюенса быстрых нейтронов. При этом сохраняются все достоинства прототипа, но существенно расширяется доступность способа для его применения на реакторах и ускорителях.

Это достигается тем, что способ измерения флюенса быстрых нейтронов полупроводниковым монокристаллическим детектором также как в прототипе включает калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами.

Согласно изобретению используют детектор в форме пластины с плоскопараллельными поверхностями оснований, до и после облучения измеряют электрическое сопротивление между основаниями пластины, для чего перед измерениями на всю поверхность каждого основания пластины наносят омические контакты, а флюенс быстрых нейтронов F определяют по изменению электрической проводимости (обратная величина электрического сопротивления) между контактами до и после облучения пластины

, (3)

где К - коэффициент пропорциональности, который постоянен для измеряемого спектра нейтронов и не зависит от исходного электрического сопротивления; коэффициент К определяют при калибровке детектора;

d - толщина пластины,

S - площадь каждого основания пластины,

R0, R - исходное и конечное электрические сопротивления между омическими контактами до и после облучения соответственно.

Суть изобретения заключается в том, что в предлагаемом способе детектор изготавливают в форме пластины монокристаллического полупроводника с омическими контактами по всей поверхности каждого основания пластины, а поверхности оснований плоскопараллельны. Это позволяет устанавливать однозначную связь электрического сопротивления между основаниями пластины и удельным электрическим сопротивлением в объеме полупроводникового монокристалла. Тем самым получать ровно такую же информацию о флюенсе быстрых нейтронов, как и по прототипу, но с применением простой регистрирующей аппаратуры. При этом сохраняются все достоинства прототипа. В самом деле, под действием быстрых нейтронов в полупроводниковых монокристаллах образуются радиационные дефекты, в том числе электрически активные, т.е. ионизованные при обычной температуре. Концентрация этих дефектов пропорциональна флюенсу быстрых нейтронов и зависит от энергии нейтронов. Эти дефекты компенсируют основную примесь монокристалла, тем самым увеличивают его удельное электрическое сопротивление. Если плоскости оснований пластины плоскопараллельны, а боковая поверхность пластины перпендикулярна плоскостям оснований, то в соответствии с законом Ома удельное электрическое сопротивление легко может быть определено через электрическое сопротивление между основаниями пластины:

, (4)

где ρ - удельное электрическое сопротивление,

R - электрическое сопротивление между основаниями пластины,

S - площадь основания пластины,

d - толщина пластины.

Подставив (4) в выражение (2) получим выражение (3). Отметим, что основания пластины могут иметь любую конфигурацию: круг, кольцо, треугольник, многоугольник и т.п. Для реализации этого способа определения флюенса быстрых нейтронов необходимо правильно определять электрическое сопротивление R между торцами шайбы. На границе контакта металл-полупроводник возникает потенциальный барьер и связанный с ним запорный слой. Следовательно, эти контакты будут выпрямляющими. В некоторых случаях этот потенциальный барьер пренебрежимо мал и вольтамперная характеристика такого контакта представляет собой прямую линию. Связь между током через такой контакт и напряжением на нем выражается, таким образом, линейным законом - законом Ома - вне зависимости от полярности приложенного к этому контакту напряжения. Такой контакт и является омическим (не выпрямляющим). Для включения монокристаллических пластин в электрическую цепь на всю плоскость каждого основания пластины наносят омические контакты. Наиболее просто это сделать с помощью алюмогаллиевого карандаша или индийгаллиевой пасты [например, страница 233 учебного пособия: Нашельский А.Я. Производство полупроводниковых материалов. - М.: Металлургия, 1989 - 272 с.]. В качестве полупроводникового монокристалла могут быть использованы любые простые полупроводники: кремний Si, углерод С, германий Ge, серое олово ά-Sn, мышьяк As,, бор B, фосфор P, селен Se (красный), сера ά-S, сурьма β-Sb, теллур Te, йод J.

Возможность осуществления способа подтверждается экспериментами, проведенными на исследовательском ядерном реакторе типа ИРТ-Т мощностью 6 МВт в г. Томске. В качестве монокристалла был использован кремний. Эксперименты проводились на выведенном пучке нейтронов горизонтального экспериментального канала ГЭК-10 (на выходе из канала). Контроль за флюенсом быстрых нейтронов осуществляли с помощью пороговых серных активационных детекторов, показывающих интегральную плотность потока нейтронов с энергией выше 3 МэВ. Предварительно проводили калибровку детекторов, т.е. по показаниям серных детекторов FS и изменениям проводимости (обратная величина электрического сопротивления) монокристаллических шайб определили коэффициент пропорциональности K в выражении (3):

. (5)

Для канала ГЭК-10 K=9,94·1014 Ом/см. Сделаем несколько замечаний по поводу калибровки детектора. Порог дефектообразования (энергия, которую необходимо сообщить атому, чтобы выбить его из узла кристаллической решетки) в монокристаллах кремния - около 25 эВ. Максимальная энергия E, которую передает нейтрон с энергией En атому при лобовом столкновении, равна

, (6)

где M, Mn - массы атома и нейтрона соответственно.

Энергии E=25 эВ соответствует энергия нейтрона En=194 эВ. При этом атом может рекомбинировать с образовавшейся вакансией. Поэтому ему необходимо сообщить большую кинетическую энергию. Приближенно можно считать, что дефектообразование в кремнии наступает при E>400 эВ. Серные же детекторы дают информацию о флюенсе нейтронов с энергией свыше 3 мэВ. Поэтому, несмотря на то, что дефекты в кремнии образуются при энергии нейтронов свыше 400 эВ, калибровка кремниевых детекторов в соответствии с выражением (5) позволяет судить лишь о флюенсе нейтронов с энергией свыше 3 мэВ. Поэтому для каждого канала реактора со своим спектром нейтронов (известным или не известным) необходима индивидуальная калибровка детекторов. Очевидно, при известном спектре в канале реактора можно определить флюенс нейтронов каждой энергетической группы спектра по показаниям как серных активационных детекторов, так и (после калибровки), по показаниям кремниевых детекторов. В то же время, кремниевыми детекторами без калибровки можно определять в относительных единицах флюенс всех нейтронов с энергией свыше 400 эВ, т.е. именно тех нейтронов, которые участвуют в дефектообразовании.

При определении плотности потока нейтронов с энергией свыше 3 мэВ было облучено 9 шайб монокристаллического кремния n-типа. Шайбы кремния были выполнены в форме правильного цилиндра диаметром 1,33 см и высотой 0,5 см. Одновременно облучали по 3 шайбы кремния вместе с серным детектором. Перед измерениями электрического сопротивления на торцы шайб наносили тонкие слои индийгаллиевой пасты и прикладывали пластины из титана. Результаты измерений приведены в таблице. В таблице R0, R - электрические сопротивления между основаниями шайб перед и после облучения соответственно; FS, FSi - флюенсы быстрых нейтронов с энергией выше 3 мэВ по показания серных и кремниевых детекторов соответственно; δ=100·(FSi-FS)/FS %. FSi вычисляли в соответствии с выр.(3) при K=9,94·1014 Ом/см. По приведенным данным можно оценить погрешность детектирования - ≈10%.

Полезный результат заключается в том, что для получения информации о флюенсе быстрых нейтронов достаточно иметь простую регистрирующую аппаратуру - омметр. Это делает метод доступным для использования на любом соответствующем предприятии. Калибровку детектора можно, как и по прототипу, осуществить даже в одном единственном облучении монокристаллической шайбы с любым исходным электрическим сопротивлением. При этом калибровка остается той же самой и для монокристалла с любым другим исходным сопротивлением. Кроме того, каждый монокристалл можно использовать многократно, либо отжигая радиационные дефекты для перевода сопротивления в исходное значение, либо облучая ранее облученную шайбу, принимая за исходное сопротивление то, которое имел облученный монокристалл перед следующим облучением.

Таблица. Результаты облучения.

R0 R FS FSi δ
Ом Ом см-2 см-2 %
420 440 3,70·1010 4,04·1010 9,3
412 429 3,70·1010 3,59·1010 2,9
417 434 3,70·1010 3,51·1010 5,1
277 352 2,82·1011 2,87·1011 1,9
282 356 2,82·1011 2,75·1011 2,3
279 360 2,82·1011 3,01·1011 6,9
152 448 1,56·1012 1,62·1012 4,1
149 431 1,56·1012 1,64·1012 5,2
155 411 1,53·1012 1,50·1012 1,9

Способ измерения флюенса быстрых нейтронов полупроводниковым монокристаллическим детектором, включающий калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, отличающийся тем, что детектор изготавливают в форме пластины с плоскопараллельными поверхностями оснований, до и после облучения измеряют электрическое сопротивление между основаниями пластины, для чего перед измерениями на всю поверхность каждого основания пластины наносят омические контакты, а флюенс быстрых нейтронов F определяют по изменению электрической проводимости между контактами до и после облучения пластины ,где К - коэффициент пропорциональности, который постоянен для измеряемого спектра нейтронов и не зависит от исходного электрического сопротивления, коэффициент К определяют при калибровке детектора;d - толщина пластины;S - площадь каждого основания пластины;R, R - исходное и конечное электрические сопротивления между омическими контактами до и после облучения соответственно.
СПОСОБ ИЗМЕРЕНИЯ ФЛЮЕНСА БЫСТРЫХ НЕЙТРОНОВ ПОЛУПРОВОДНИКОВЫМ МОНОКРИСТАЛЛИЧЕСКИМ ДЕТЕКТОРОМ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 143.
20.12.2014
№216.013.1195

Свч генератор с виртуальным катодом коаксиального типа

Изобретение относится к технике СВЧ и может быть использовано для генерации мощных импульсов электромагнитного излучения сильноточными электронными пучками. СВЧ-генератор с виртуальным катодом коаксиального типа содержит источник высокого напряжения (1), отрицательный электрод которого соединен...
Тип: Изобретение
Номер охранного документа: 0002535924
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.2267

Способ измерения тока в проводнике с помощью герконов

Изобретение относится к измерительной технике и может быть использовано для измерения токов в электроустановках. Способ измерения тока в проводнике с помощью герконов заключается в том, что два геркона с нормально разомкнутыми контактами устанавливают вблизи проводника. Настраивают их так,...
Тип: Изобретение
Номер охранного документа: 0002540260
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2268

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения rhx iny

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из...
Тип: Изобретение
Номер охранного документа: 0002540261
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22c6

Пленкообразующее вещество на основе нефтеполимерной смолы

Изобретение относится к технологии полимеров и может найти применение в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Пленкообразующее вещество на основе нефтеполимерной смолы включает озонированную нефтеполимерную смолу, при этом озонированная нефтеполимерная...
Тип: Изобретение
Номер охранного документа: 0002540355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231d

Способ измерения фоновых концентраций веществ в болотных водах

Изобретение относится к гидрохимии болот и может быть использовано для измерения фоновых концентраций веществ в болотных водах. Сущность: выделяют однородные участки болота на основе анализа глубин торфяной залежи и болотных фитоценозов. Измеряют фоновую концентрацию вещества в болотных водах...
Тип: Изобретение
Номер охранного документа: 0002540442
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231e

Способ определения места обрыва на воздушной линии электропередачи

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов...
Тип: Изобретение
Номер охранного документа: 0002540443
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231f

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002540444
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23ea

Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья

Изобретение относится к теплоэнергетике и может быть использовано для автономного энергообеспечения малых городов, поселков городского типа и сельских поселений. Энергоустановка содержит корпус (1), покрытый теплоизоляцией (2). Внутри корпуса (1) размещена газификационная печь (3) в виде сосуда...
Тип: Изобретение
Номер охранного документа: 0002540647
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.243f

Ячеистый теплозвукоизоляционный материал

Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения...
Тип: Изобретение
Номер охранного документа: 0002540732
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2617

Устройство для дорнования глубоких отверстий

Изобретение относится к металлообработке. Устройство состоит из корпуса с отверстием для размещения дорна и толкателя его привода. На корпусе закреплено направляющее устройство для толкателя, в корпусе которого выполнены центральное сквозное ромбическое отверстие для направления толкателя и...
Тип: Изобретение
Номер охранного документа: 0002541204
Дата охранного документа: 10.02.2015
Показаны записи 61-70 из 236.
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8065

Коаксиальный магнитоплазменный ускоритель

Изобретение относится к плазменной технике и может быть использовано для ускорения плазмы до гиперскоростей и получения нанодисперсных порошков титана и меди. Коаксиальный магнитоплазменный ускоритель содержит соленоид, цилиндрический титановый ствол, цепь питания. Титановый ствол содержит...
Тип: Изобретение
Номер охранного документа: 0002498542
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8199

Цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный цеолит...
Тип: Изобретение
Номер охранного документа: 0002498853
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.820b

Способ получения волластонитовых керамических пигментов на основе двухкальциевого силиката

Изобретение относится к области производства пигментов для фарфоровых, полуфарфоровых и майоликовых изделий. Способ заключается в быстром охлаждении в воде обожженного при температурах 1050-1100°C геля, полученного обработкой концентрированной соляной кислотой смеси тонкомолотого отхода -...
Тип: Изобретение
Номер охранного документа: 0002498967
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.83a1

Устройство для возбуждения высокочастотного факельного разряда

Изобретение относится к плазменной технике и может быть использовано для инициирования высокочастотной плазмы. Устройство для возбуждения высокочастотного факельного разряда содержит диэлектрическую трубку, установленную в пазу диэлектрического фланца, в осевом отверстии которого размещен полый...
Тип: Изобретение
Номер охранного документа: 0002499373
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.862e

Устройство для моделирования объединенного регулятора потока мощности

Изобретение относится к области моделирования объектов электрических систем и может быть использовано для воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов в объединенном регуляторе потока мощности в специализированных многопроцессорных...
Тип: Изобретение
Номер охранного документа: 0002500028
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8806

Способ определения оптимальной скорости резания

Способ относится к твердосплавным режущим инструментам группы применяемости Р в виде режущих пластин и заключается в том, что проводят измерения температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением графической зависимости....
Тип: Изобретение
Номер охранного документа: 0002500504
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.889b

Способ получения нанодисперсной шихты для изготовления нитридной керамики

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота...
Тип: Изобретение
Номер охранного документа: 0002500653
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8977

Электроимпульсный буровой снаряд

Изобретение относится к области проходки скважин и стволов высоковольтными разрядами в крепких горных породах и может найти применение в горнодобывающей промышленности, а также в строительной отрасли. В снаряде последовательно соединены гидротоковвод (1), колонна бурильных труб (2) и буровой...
Тип: Изобретение
Номер охранного документа: 0002500873
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.897b

Установка для обработки буровых и тампонажных растворов

Изобретение относится к нефте- и горнодобывающим отраслям промышленности и может быть использовано для обработки цементных, буровых, тампонажных растворов. Установка содержит последовательно соединенные повысительно-выпрямительные узлы с фильтром высших гармоник на входе, генератор импульсных...
Тип: Изобретение
Номер охранного документа: 0002500877
Дата охранного документа: 10.12.2013
+ добавить свой РИД