×
20.07.2014
216.012.e1a2

Результат интеллектуальной деятельности: НАНОКОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к композиционным полимерным материалам и способу их получения. Нанокомпозиционный полимерный материал получают путем совместной конденсации на подложке паров сульфидов металлов и дихлор-п-ксилилена, полученного пиролизом α,α'-дихлор-п-ксилола, в вакууме с образованием пленок полимерной пленки. Причем в качестве сульфидов металлов используют PbS, CdS, ZnS. После чего полимерную пленку дополнительно прогревают в вакууме или в протоке инертного газа до получения пленки сопряженного полимера полифениленвинилена, содержащего наночастицы PbS, CdS, ZnS. Материал на основе сопряженного полимера полифениленвинилена содержит 4,2-8 об.% наночастиц сульфидов металлов PbS, CdS, ZnS с размером 4,1-9,5 нм. Полученный материал обладает интенсивной электролюминесценцией с максимумом в интервале длин волн 480-520 нм, мощностью излучения 5-20 мВт и оптическим поглощением в видимой области свыше 90%. 2 н.п. ф-лы, 3 табл.

Изобретение относится к композиционным полимерным материалам и к способам получения пленочных материалов на основе сопряженных полимеров, содержащих частицы сульфидов металлов нанометрового размера

Сопряженные полимеры вызывают значительный интерес в связи с использованием их в электрических и фотоэлектронных приборах [L. Dai, J.S.M. - rev. macromol., chem. phys., с.39(2), p.273-287, 1999]. Они имеют ряд привлекательных свойств: варьирование ширины запрещенной зоны и потенциала ионизации, путем химической модификации полимерной цепи. Одним из таких полимеров является поли-п-фениленвинилен (PPV). Методы синтеза PPV представлены в [B.R. Cho, Prog. Polym. Sci. 27(2002) 307-355]. Однако эти методы сопровождаются побочными реакциями с растворителями и присутствующим в растворителях кислородом, что приводит к внедрению в полимерную цепь дефектов, влияющих на люминесцентные свойства PPV. Кроме того, в результате получаются нерастворимые и неплавящиеся полимеры, с которыми в дальнейшем трудно работать. Для возможности введения наночастиц в полимерную матрицу их необходимо модифицировать органическими веществами, что формирует неоптимальную межфазную границу. Одним из недостатков таких материалов является низкая эффективность преобразования падающих фотонов в носители зарядов. Для повышения эффективности преобразования фотонов, в сопряженные полимеры вводят неорганические наночастицы [Sariciftci N.S., Swilowitz L., Heeger A.J., Wudl F. // Science V.258, №5087, P.1474-1476, 1992]. Разделение зарядов эффективно происходит на межфазной границе сопряженный полимер - наночастица, которая обладает более сильным сродством к электрону, что делает энергетически выгодным перенос электрона от полимерной матрицы к наночастице.

Известен [US Patent Application №0100000607, 2010] способ получения сопряженных полимерных пленок толщиной несколько мк, в частности PPV, содержащих кластеры PbS, PbTe, PbSe диаметром 1-10 нм, методом соосаждения органических мономеров или олигомеров, органических ионов, инициирующих полимеризацию, и неорганических кластеров. Однако указанный способ требует сложного оборудования (источник органических ионов, источник неорганических кластеров), что ограничивает номенклатуру нанокомпозитов. Кроме того, присутствие органических ионов сопровождается побочными реакциями, что приводит к внедрению в полимерную цепь дефектов, влияющих на люминесцентные свойства нанокомпозитов.

Наиболее близким по технической сущности к предложенному является способ получения пленочных материалов, содержащих наночастицы сульфидов металлов [Морозов П.В. Структура и свойства нанокомпозитов на основе поли-п-ксилилена, поли-п-фениленвинилена, полученных полимеризацией из газовой фазы. Автореферат диссертации на соискание ученой степени кандидата физико-математических наук, Москва, 2010]. Пары сульфидов металлов и дихлор-п-ксилилена соконденсируют в вакууме на охлаждаемую до низких температур подложку. Пары дихлор-п-ксилилена получаются пиролизом α,α′-дихлор-п-ксилола, и образующуюся полимерную пленку дополнительно прогревают в вакууме при температуре 200-270˚С. Образующийся полимер ограничивает рост кластерных частиц, и согласно указанному способу получают пленочный сопряженный нанокомпозиционный полимерный материал, полифениленвинилен, содержащий частицы сульфидов металлов размерами несколько десятков ангстрем.

Высокая равномерность покрытия по толщине, в т.ч. на острых кромках и в узких (<1 мкм) зазорах, делает покрытие незаменимым для сложнопрофильных поверхностей [Broer D.J., Luijks W. Penetration of p-xylylene vapor into small channels prior to polymerization // Journal of applied polymer science. 1981, 26, №7, p.2415-2422].

Основным недостатком указанного способа является то, что для получения PPV нанокомпозитов необходимо использование прогрева прекурсора в вакууме. Особенности реакции дегидрохлорирования в вакууме (по-видимому, из-за сложности вывода продуктов реакции) не позволяют получить нанокомпозиты с большой длиной сопряжения PPV и, соответственно, материала, обладающего заданными электрофизическими свойствами.

Заявленный способ устраняет указанные недостатки.

Технической задачей, решаемой в настоящей заявке, является разработка способа получения нанокомпозиционных полифениленвиниленовых материалов, содержащих сульфиды металлов нанометрового размера, обладающих заданными электрофизическими свойствами.

Техническим результатом решения поставленной задачи является получение материала, обладающего более высокими электролюминесцентными и фотовольтаическими показателями по сравнению с ПВФ.

Для достижения указанного результата предложен способ получения нанокомпозиционного полимерного материала, путем совместной конденсации на подложке паров сульфидов металлов и дихлор-п-ксилилена в вакууме с образованием полимерной пленки и с последующим прогревом пленки при температуре в диапазоне 200-270°С, при этом в качестве сульфидов металлов используют Pb, CdS, ZnS, пары дихлор-п-ксилилена получают пиролизом α,α′-дихлор-п-ксилола, а прогрев ведут в потоке инертного газа до образования сопряженного полифениленвинилена.

Также предложен материал, полученный вышеуказанным способом, на основе сопряженного полимера полифениленвинилена, содержащий 4,2-8 об.% наночастиц сульфидов металлов PbS, CdS, ZnS, размером 4,1-9,5 нм, обладающий интенсивной электролюминесценцией с максимумом в интервале длин волн 480-520 нм, мощностью излучения 5-20 мВт, числом звеньев с сопряженными двойными связями 12,1-27,1.

Сущность изобретения состоит в следующем. Получение материала достигается тем, что проводится совместная конденсация паров дихлор-п-ксилилена, получающихся пиролизом α,α′-дихлор-п-ксилола и паров PbS, CdS, ZnS в вакууме на подложку при температуре подложки (-196)°C-(60)°C и дальнейшем прогреве в протоке инертного газа, выбранного из азота, аргона, гелия при температуре 200-270°C.

Отличие предложенного способа от прототипа состоит в том, что для получения пленки сопряженного нанокомпозиционного полимерного материала, на основе полифениленвинилена, содержащего наночастицы PbS, CdS, ZnS прогрев ведут в протоке инертного газа (азота, аргона, гелия). Варьируя скорость осаждения сульфида металла и α,α′-дихлор-п-ксилилена, можно получить материалы, содержащие наночастицы сульфидов металлов определенных размеров и определенное количество наночастиц.

Содержание сульфида металла может варьироваться от 0,1 до 50 об.%. В получаемом по предлагаемому способу материале отсутствуют внутренние напряжения, что позволяет получать полимерную пленку большой толщины (до 1 мм). Конденсацию паров мономера проводили при различной температуре подложек (196, 25, 50°С). Для получения ПФВ образцы отжигали в потоке инертного газа (азот, аргон, гелий) при 200-270°C в течение 0,5-1 ч. Происходит процесс дегидрохлорирования. Основным структурным признаком полученного материала является образованием в нем систем с полисопряженных пи-связей на существование которых однозначно указывает приобретаемую им флуоресценцию в видимой области. При увеличении длины сопряжения (числа бензольных фрагментов в цепочке двойных связей) происходит увеличение длины волны флуоресценции нанокомпозитов. Следует отметить, что в используемом способе изготовления нанокомпозитов на межфазной границе полимер - сульфид металла не находятся стабилизирующие наночастицы вещества. Электролюминесцентный свойства исследовались для нанокомпозитов, осажденных на прозрачный электрод ITO (indium tin oxide). Вторым электродом являлся алюминий. Электролюминесценция наблюдалась при напряжении 10 В. Электролюминесцентные и фотовольтаические свойства проявлялись при содержании сульфида металлов 2-14 об.%. При меньшем содержании сульфида не образуется ансамбля взаимодействующих наночастиц и указанные свойства не проявляются. При большем содержании сульфида достигается порог перколяции проводимости и наночастицы теряют свои уникальные свойства. Для осуществления способа используется стандартный реактор для получения матрично-изолированных соединений [Криохимия. Ред. М. Московиц, Г. Озин. М: Мир, 1979]. Реактор состоит из: 1) подложки различной природы, например кварц, ITO, на которой адсорбируют пары сульфида металла и мономера с одновременной полимеризацией, температура подложки может регулироваться; 2) камеры для контролируемого испарения металла (типа камеры Кнудсена); 3) камеры испарения и пиролиза α,α′-дихлор-п-ксилола, реактор вакуумировался до 10-6 Торр.

Примеры реализации изобретения

Пример 1

Пары дихлор-п-ксилилена получаются пиролизом α,α′-дихлор-п-ксилола, температура испарения 60°C, температура пиролиза 600°C. Пары PbS получаются испарением при температуре 950°C. Пары PbS и дихлор-п-ксилилена соконденсируют в вакууме на подложку при температуре 25°C. Получающийся полимерная пленка прогревается в атмосфере азота при температуре 250°C в течение 1 часа. В результате образуется полимерная пленка толщиной 3 мк полифениленвинилена, содержащая наночастицы PbS, размером 4,1 нм.

Содержание сульфида свинца 7,4 об.%. Полученный нанокомпозит обладает следующими оптическими свойствами: максимум поглощения 430 нм, максимум люминесценции 510 нм, длина сопряжения (число повторяющихся единиц фенилен винилена) 18,1, ширина запрещенной зоны 2,08 эВ. Электролюминесцентные свойства характеризуются максимумом излучения при 10 в 520 нм и мощностью излучения 20 мВт.

Таблица 1.
Условия получения нанокомпозитов
Нанокомпозит Тисп.
параксилола, °C
Тисп. сульфида, °C Тип подложки Тпод.,
°С
Тпиролиза, °С Тпрогрева, °С Время прогрева, ч Атмосфера прогрева
1 PbS-PPV 60 950 кварц 25 600 250 1 азот
2 PbS-PPV 90 990 кварц 50 750 270 0,5 аргон
3 CdS-PPV 60 1200 кварц 25 750 270 0,5 гелий
4 ZnS-PPV 40 900 ITO -196 750 200 1,0 азот

Таблица 2.
Структура и оптические свойства нанокомпозитов
Нанокомпозит Толщина, мк Содержание сульфида, об.% Размер наночастиц, нм Max поглощения, нм Max люминесценции, нм L длина сопряжения PPV E ширина запрещенной зоны, эВ
1 PbS-PPV 3 7,4 4.1 430 510 18,1 2,08
2 PbS-PPV 1 4,2 5,3 450 550 27,1 2,10
3 CdS-PPV 1 8 9,5 415 480 12,1 2,51
4 ZnS-PPV 4,0 5,5 3,5 435 515 15,2 2,55

Таблица 3.
Электролюминесцентные и фотовольтаические свойства нанокомпозитов
№ примера Табл.1 Нанокомпозит Max изл. при 10 В, нм Мощность излучения, мВт
1 PbS-PPV 520 20
3 CdS-PPV 480 15
4 ZnS-PPV 515 5

Источник поступления информации: Роспатент

Показаны записи 151-160 из 266.
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.442c

Модуль бланкета гибридного термоядерного реактора

Изобретение относится к области термоядерной техники, в частности к бланкетам гибридных термоядерных реакторов. Модуль бланкета гибридного термоядерного реактора с жидкометаллическим теплоносителем содержит тепловыделяющие сборки с тепловыделяющими элементами. Топливо тепловыделяющих элементов...
Тип: Изобретение
Номер охранного документа: 0002649854
Дата охранного документа: 05.04.2018
29.05.2018
№218.016.5623

Система управления электронной плотностью плазмы на установках типа токамак

Изобретение относится к средствам проведения исследований в области управляемого термоядерного синтеза на установках типа токамак. Система управления электронной плотностью плазмы состоит из СВЧ интерферометра, с опорным каналом и основным каналом, проходящим через камеру токамака, на одном...
Тип: Изобретение
Номер охранного документа: 0002654518
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.58ad

Способ создания лазерного излучения и лазер, реализующий этот способ

Изобретение относится к лазерной технике. Для создания лазерного излучения используют газоразрядную камеру, установленную на ее выходе ионно-оптическую систему для формирования ускоренного пучка ионов, лазерный резонатор, в котором устанавливают узел перезарядки, представляющий проводящее...
Тип: Изобретение
Номер охранного документа: 0002653567
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.58dd

Устройство и способ для формирования мощных коротких импульсов co

Изобретение относится к лазерной технике. Устройство для формирования мощных коротких импульсов СO лазером состоит из последовательно расположенных задающего генератора на линии Р(20) 10-мкм полосы, трехсекционной резонансно-поглощающей ячейки со смесью SF и N, оптической схемы геометрического...
Тип: Изобретение
Номер охранного документа: 0002653568
Дата охранного документа: 11.05.2018
Показаны записи 151-160 из 160.
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
29.05.2018
№218.016.55f1

Способ восстановления функциональных свойств тканеинженерной конструкции диафрагмы

Изобретение относится к медицине, а именно к регенеративной медицине, и может быть использовано для оценки функциональных свойств тканеинженерной конструкции диафрагмы в эксперименте. Для этого используют диафрагму крысы, полученный матрикс которой рецеллюляризируют путем нанесения на него...
Тип: Изобретение
Номер охранного документа: 0002654686
Дата охранного документа: 21.05.2018
19.08.2018
№218.016.7d1b

Способ получения биоразлагаемого композита на основе алифатических сложных полиэфиров и гидроксиапатита

Изобретение относится к медицинской химии, а именно к биоразлагаемым фосфатсодержащим полимерным материалам, использующимся в качестве аналогов костной ткани, и раскрывает способ получения биоразлагаемого композита. Способ характеризуется тем, что синтез композита, который включает в себя...
Тип: Изобретение
Номер охранного документа: 0002664432
Дата охранного документа: 17.08.2018
22.10.2019
№219.017.d8f3

Способ получения органомодифицированного гидроксиапатита

Изобретение может быть использовано при создании биоразлагаемых материалов. Способ получения органомодифицированного гидроксиапатита путем прививки молочной кислоты включает модификацию гидроксиапатита в растворе этилового спирта и молочной кислоты с использованием ультразвуковой диспергации....
Тип: Изобретение
Номер охранного документа: 0002703645
Дата охранного документа: 21.10.2019
26.10.2019
№219.017.dac7

Способ получения органомодифицированного монтмориллонита (ммт)

Изобретение относится к способу модификации неорганического алюмосиликатного наполнителя, монтмориллонита (глины) ММТ с помощью органических водорастворимых биоразлагаемых модификаторов и может быть использован при создании композитов с улучшенными характеристиками (высокой степенью прививки и...
Тип: Изобретение
Номер охранного документа: 0002704190
Дата охранного документа: 24.10.2019
+ добавить свой РИД