×
20.07.2014
216.012.ddef

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НИТРИДА ЦИРКОНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения порошков тугоплавких соединений, которые могут быть использованы для получения высокотвердой керамики и защитных износостойких покрытий. Способ получения нитрида циркония заключается в проведении самораспространяющегося высокотемпературного синтеза экзотермической смеси, состоящей из оксида циркония и энергетической составляющей, в присутствии азотирующего агента, при этом производится закалка промежуточных продуктов прерыванием процесса горения через 20-90 секунд после инициирования, в экзотермическую смесь дополнительно вводят активирующую добавку нанопорошка оксида иттрия, в качестве энергетической составляющей используют нанопорошок циркония, при этом размер частиц оксида циркония в 500-1000 раз меньше размера частиц циркония, при следующем соотношении компонентов, мас.%: энергетическая составляющая - 60-100, оксид циркония - 0-40, активирующая добавка (вводится сверх 100%) - 1-3. Технический результат изобретения заключается в повышении выхода нитрида циркония при простоте его получения. 1 табл., 1 пр.
Основные результаты: Способ получения нитрида циркония, заключающийся в проведении самораспространяющегося высокотемпературного синтеза экзотермической смеси, состоящей из оксида циркония и энергетической составляющей, в присутствии азотирующего агента, отличающийся тем, что производится закалка промежуточных продуктов прерыванием процесса горения через 20-90 секунд после инициирования, в экзотермическую смесь дополнительно вводят активирующую добавку нанопорошка оксида иттрия, в качестве энергетической составляющей используют нанопорошок циркония, при этом размер частиц оксида циркония в 500-1000 раз меньше размера частиц циркония, при следующем соотношении компонентов, мас.%: активирующая добавка (вводится сверх 100%) 1-3.

Изобретение относится к области получения порошков тугоплавких соединений, в частности нитрида циркония. Нитрид циркония характеризуется высокой температурой плавления, высокой твердостью, высокими прочностными характеристиками. Керамика на основе нитрида циркония применяется в электротехнике, атомном материаловедении, обрабатывающей промышленности. Также нитрид циркония применяется в качестве защитных износостойких покрытий деталей, контактирующих с агрессивными средами. Благодаря термохимической стабильности нитрид циркония обладает наилучшей коррозионной стойкостью по сравнению с другими мононитридами переходных металлов.

Известен способ получения нитрида циркония непосредственным азотированием порошка циркония. Порошок циркония подвергают термообработке при температуре 1200-1600°С в среде азота [Патент СССР №145558, 22.04.1962, С01В 21/076 Способ получения нитрида циркония]. Недостатками указанного способа являются высокие температуры синтеза, сложное аппаратурное оснащение, необходимость применения дорогостоящего газа - азота.

Известен способ, при котором гидрированный порошок циркония образует нитрид при высоких температурах, порядка 1300-1400°С, в течение 5 ч в среде азота. При азотировании гидрида циркония при 1050°С в течение 21 ч получен нитрид циркония [Самсонов Г.В. Нитриды / под ред. Э.Е.Гриценко. - Киев: Наукова Думка, 1969. - 379 с].

Известен способ получения нитрида циркония, заключающийся в восстановлении оксида циркония техническим углеродом в среде азота при 1300°С. Недостатком способа является присутствие в продуктах непрореагировавшего углерода, а также образование твердого раствора ZrN-ZrC [Курганов Г.В., Левинский Ю.В. и др. Химия и физика нитридов / Г.В. Курганов и др. - Киев: Наукова Думка, 1968. - 47 с].

Метод наращивания из газовой фазы на вольфрамовой проволоке позволяет получать нитрид циркония из смеси ZrCl4 и NH3 или N2+H2 при температуре нити 2000-2400°С, а из смеси ZrCl4+N2 - при 3000°С [Самсонов Г.В. Нитриды / под ред. Э.Е.Гриценко. - Киев: Наукова Думка, 1969. - 379 с].

Наиболее близким аналогом (прототип) является способ получения нитридов металлов [Патент РФ №2355631, 20.05.2009, С01В 21/076. Способ получения нитридов металлов]. В прототипе приготавливают экзотермическую смесь, состоящую из оксида азотируемого металла и энергетической составляющей, и воспламеняют ее в присутствии азотирующего агента, при этом в качестве азотирующего агента используют воздух при атмосферном давлении, а в качестве энергетической составляющей используют нанопорошок алюминия при следующем соотношении компонентов, мол.%:

энергетическая составляющая 60-80

оксид азотируемого металла - остальное

В прототипе образцы смесей приготавливали методом сухого смешения с применением малых нагрузок, смешение осуществляли в течение 15 минут. Подготовленные образцы высыпали на подложку из нержавеющей стали (толщина листа - 3 мм, марка стали 18Х12Н10Т), придавая насыпанному материалу коническую форму для улучшенной фильтрации воздуха в зону реакции. Образцы воспламеняли в воздухе: процесс горения инициировали пропусканием импульса электрического тока (6 А) через нихромовую спираль (диаметр проволоки - 0,3 мм), находящуюся в контакте с исходной смесью. В результате сгорания образовывались спеки, которые измельчали с помощью шаровой мельницы (помол в течение 0,5 часа) и подвергали рентгенофазовому анализу (метод порошка, дифрактометр ДРОН-3М, CuKa-излучение).

Недостатками способа являются:

- невысокий выход нитрида циркония;

- загрязнение получаемого материала продуктами взаимодействия алюминия с воздухом за счет использования алюминия в качестве энергетической составляющей и введение его в исходную экзотермическую смесь в количестве 60-80 мол. %

Технической задачей данного изобретения является повышение выхода нитрида циркония при получении его простым способом.

Поставленная техническая задача заключается в проведении самораспространяющегося высокотемпературного синтеза экзотермической смеси, состоящей из оксида азотируемого металла и энергетической составляющей, в присутствии азотирующего агента. Производится закалка промежуточных продуктов прерыванием процесса горения через 20-90 секунд после инициирования, в экзотермическую смесь дополнительно вводят активирующую добавку нанопорошка оксида иттрия, в качестве энергетической составляющей используют нанопорошок циркония, при следующем соотношении компонентов, мас.%:

энергетическая составляющая 60-100

оксид азотируемого металла 0-40

активирующая добавка

(вводится сверх 100%) 1-3

Способ получения нитрида циркония осуществляется с помощью горения свободно насыпанных навесок экзотермических смесей на основе нанопорошка циркония и нанопорошка оксида циркония с активирующей добавкой нанопорошка оксида иттрия на воздухе. Смешение исходных. компонентов осуществляется механическим способом. Масса навески равна 5 г. Через 20-90 секунд после инициирования производится закалка продуктов сгорания путем прерывания процесса горения гашением догорающей смеси стальной пластиной.

Использование нанопорошка циркония в качестве энергетической составляющей вместо нанопорошка алюминия позволяет избавиться от продуктов взаимодействия алюминия с компонентами воздуха при горении и повысить выход нитрида циркония за счет его образования в результате взаимодействия циркония с азотирующим агентом.

Использование нанопорошка циркония без добавок нанопорошка оксида циркония и нанопорошка оксида иттрия без закалки продуктов сгорания приводит к его сильному недогоранию, что может быть связано с относительно невысокой максимальной температурой горения (1590°С), а также к значительному окислению образовавшихся продуктов, что обусловлено длительностью стадии догорания (~ 5 минут), которая протекает при температурах 500-700°С.

Нанопорошок оксида циркония в данном способе используется как инертный компонент. Применение нанопорошка оксида циркония в качестве инертного компонента обусловлено необходимостью образования теплоизолирующей прослойки между частицами циркония, которая способствует снижению скорости горения и, как следствие, более полному превращению исходных компонентов. При этом важным фактором является соотношение размеров частиц энергетической составляющей и инертного компонента: размер частиц оксида циркония должен быть в 500-1000 раз меньше, чем частицы циркония, чтобы обеспечить образование теплоизолирующей прослойки. Введение нанопорошка оксида циркония в состав исходной шихты для сжигания на воздухе позволяет повысить максимальную температуру горения на 200°С (до 1790°С).

Нанопорошок оксида иттрия играет роль активирующей добавки в процессе нитридообразования. Он снижает температуру плавления высокоактивных металлов, в том числе циркония. При инициировании исходных реагентов на первой стадии загорается часть металла, при этом выделяется значительное количество энергии, часть этой энергии расходуется на плавление оставшегося металла. При снижении температуры плавления снижается расход энергии на данный процесс, что позволяет расширить интервал нахождения в области высоких температур. Таким образом, создаются оптимальные условия для образования нитрида, т.к. химическое связывание азота преимущественно протекает при высоких температурах. За счет введения нанопорошка оксида иттрия время нахождения в области высоких температур может быть увеличено до 30 секунд.

Закалка промежуточных продуктов сгорания прерыванием процесса горения через 20-90 с после инициирования позволяет предотвратить окисление образовавшегося нитрида циркония.

Технический результат повышения выхода нитрида циркония по сравнению с прототипом достигается за счет замены нанопорошка алюминия на нанопорошок циркония, выступающего в качестве энергетической составляющей, использования оптимального соотношения размеров частиц энергетической составляющей (Zr) и оксида азотируемого металла (ZrO2), использования активирующей добавки (оксида иттрия) и регулирования продолжительности процесса горения с помощью закалки промежуточных продуктов.

Пример конкретного выполнения.

Получение нитрида циркония осуществлялось с помощью горения экзотермической смеси, состоящей из 80 мас.% нанопорошка циркония (d50=50 нм) и 20 мас.% нанопорошка оксида циркония (d50=30 нм), в которую была введена активирующая добавка в количестве 2 мас.% сверх 100% - нанопорошок оксид иттрия (d50=60 нм). Масса навески составила 5 г. Смешение исходных компонентов осуществлялось сухим способом в агатовой ступке. Навески экзотермической смеси свободно насыпались в форме конуса на подложку из нержавеющей стали. Процесс горения инициировался локальным нагревом образца с помощью нихромовой спирали (Tиниц ~ 1000°C). После локального инициирования фронт горения с высокой скоростью распространяется по конусу, температура быстро (за 1-2 с) увеличивается, распространение тепловой волны от точки воспламенения к периферии образца сопровождается ярким свечением. Через 30 с после инициирования производилась закалка промежуточных продуктов сгорания путем прерывания процесса горения гашением догорающей смеси стальной пластиной. Изменение температуры в процессе горения регистрировалось с помощью вольфрамрениевой термопары W/Re5-W/Re20 (d=200 мкм), которая помещалась в геометрический центр конуса. Синтез осуществлялся на воздухе при следующих условиях: при температуре T=25°C, давлении P=0,1 МПа и влажности порядка φ=60%.

Определение фазового состава продуктов сгорания осуществлялось с помощью рентгенофазового анализа. Нитрид циркония являлся преобладающей фазой в продуктах сгорания: ZrN (36-66 отн. %) (см. Таблица).

Способ получения нитрида циркония
Таблица
Энергетическая Оксид азотируемого Активирующая добавка Время горения, с Продукты сгорания, отн. %
составляющая металла ZrN ZrO2 Zr Соединия алюмиия
Пример Металл Содержание в смеси, мас.% Оксид Содержание в смеси, мас.% Вещест
во
Количество мас.% (сверх 100%) Примеча
ние
1 100 0 0 660 23 32 45 - -
2 100 0 0 20 25 22 53 - -
3 100 0 0 60 27 23 50 - -
4 100 0 0 120 24 28 48 - -
5 100 0 3 60 44 11 45 - ЗС*
6 90 10 0 20 35 27 38 - -
7 90 10 0 60 35 32 33 - -
8 90 10 0 120 29 41 30 - -
9 90 10 3 30 43 28 19 - ЗС
10 90 10 5 30 43 46 11 - -
11 80 20 0 20 36 39 25 -
12 80 20 0 60 42 37 21 - ЗС
13 80 20 0 120 36 44 20 - -
14 80 20 1 30 48 28 24 - ЗС
15 Zr 80 ZrO2 20 Y2O3 1 60 58 22 20 - ЗС
16 80 20 1 90 59 24 17 - ЗС
17 80 20 2 30 63 20 17 - ЗС
18 80 20 2 60 59 24 17 - ЗС
19 80 20 2 90 53 31 16 - ЗС
20 80 20 3 30 66 19 15 - ЗС
21 80 20 3 60 60 28 12 - ЗС
22 80 20 3 90 52 34 14 - ЗС
23 70 30 0 20 39 47 14 - ЗС
24 70 30 0 60 38 49 13 - -
25 70 30 0 120 34 54 12 - -
26 60 40 0 20 36 56 9 ЗС
27 60 40 0 60 34 54 9 - -
28 60 40 0 120 30 62 8 - -
29 50 50 0 -
30 40 60 0 Смеси не инициируются -
Прото
тип (указаны мол. %)
Al 60-80 ZrO2 20-40 - - Не указа
но
<40% Не указа
но
- + 60 -
* ЗС - заявляемый способ

Способ получения нитрида циркония, заключающийся в проведении самораспространяющегося высокотемпературного синтеза экзотермической смеси, состоящей из оксида циркония и энергетической составляющей, в присутствии азотирующего агента, отличающийся тем, что производится закалка промежуточных продуктов прерыванием процесса горения через 20-90 секунд после инициирования, в экзотермическую смесь дополнительно вводят активирующую добавку нанопорошка оксида иттрия, в качестве энергетической составляющей используют нанопорошок циркония, при этом размер частиц оксида циркония в 500-1000 раз меньше размера частиц циркония, при следующем соотношении компонентов, мас.%: активирующая добавка (вводится сверх 100%) 1-3.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 146.
20.08.2014
№216.012.ea88

Система зажигания

Изобретение относится к области транспорта и может быть использовано для выработки импульсов высокого напряжения, образующих искру между электродами свечей зажигания и распределения высоковольтных импульсов по цилиндрам двигателя в необходимой последовательности. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002525848
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed3d

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией...
Тип: Изобретение
Номер охранного документа: 0002526552
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee4a

Способ количественного определения молочной кислоты методом вольтамперометрии на стеклоуглеродном электроде

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека. Задачей заявляемого...
Тип: Изобретение
Номер охранного документа: 0002526821
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eec8

Способ разрушения многокомпонентных изделий

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их...
Тип: Изобретение
Номер охранного документа: 0002526947
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f51f

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002528584
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f523

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной...
Тип: Изобретение
Номер охранного документа: 0002528588
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
Показаны записи 41-50 из 237.
27.09.2013
№216.012.6e63

Цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный...
Тип: Изобретение
Номер охранного документа: 0002493910
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6f30

Способ получения поливинилацетатной дисперсии

Изобретение относится к способу получения поливинилацетатной дисперсии и может быть использовано в химической промышленности. Способ получения поливинилацетатной дисперсии (ПВАД) включает эмульсионную полимеризацию винилацетата, полимеризацию проводят в присутствии водорастворимого радикального...
Тип: Изобретение
Номер охранного документа: 0002494115
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703d

Способ определения платины в водных растворах методом хронопотенциометрии

Изобретение направлено на определение платины в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494384
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703e

Способ определения золота в водных растворах методом хронопотенциометрии

Изобретение направлено на определение золота в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494385
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7086

Устройство для моделирования статического синхронного компенсатора

Изобретение относится к области моделирования объектов электрических систем. Техническим результатом является обеспечение всережимного моделирования в реальном времени и на неограниченном интервале процессов, протекающих в статическом синхронном компенсаторе. Устройство для моделирования...
Тип: Изобретение
Номер охранного документа: 0002494457
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70b8

Материал для поглощения электромагнитных волн

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот. Технический результат - повышение коэффициента поглощения, механической прочности при сохранении низкого коэффициента отражения материала. Для этого материал для...
Тип: Изобретение
Номер охранного документа: 0002494507
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fe

Способ определения оптимальной скорости резания

Способ относится к обработке твердосплавными режущими инструментами группы применяемости К в виде режущих пластин и заключается в том, что сначала проводят измерение температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением...
Тип: Изобретение
Номер охранного документа: 0002494839
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7439

Устройство для разбраковки металлических изделий

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для контроля физико-химических свойств поверхностных слоев металла контролируемого изделия, подвергнутого термической или химикотермической обработке, а также для выявления степени пластической деформации....
Тип: Изобретение
Номер охранного документа: 0002495410
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.743a

Способ определения таллия в водных растворах методом хронопотенциометрии

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения таллия в водных растворах методом хронопотенциометрии заключается том, что таллий (I) переводят в растворе в гидроокисное...
Тип: Изобретение
Номер охранного документа: 0002495411
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.745b

Способ диагностики состояния асинхронного электродвигателя

Изобретение относится к средствам диагностики электрических машин и может быть использовано для контроля состояния асинхронного электродвигателя. Способ диагностики состояния асинхронного электродвигателя включает предварительную фиксацию порогового значения интегральной оценки асинхронного...
Тип: Изобретение
Номер охранного документа: 0002495444
Дата охранного документа: 10.10.2013
+ добавить свой РИД