×
20.07.2014
216.012.ddae

Результат интеллектуальной деятельности: СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано для увода отделяющихся частей ступеней ракет космического назначения. Получают импульс путем выброса газифицированных жидких остатков невыработанных компонентов ракетного топлива (РТ), обеспечивают импульс за счет сгорания невыработанных компонентов РТ в камере газового ракетного двигателя, ограничивают объем невыработанных остатков РТ, разделяют секундный массовый расход теплоносителя (ТН) на 2 части (одну часть подают в объем, ограниченной сеткой, другую - во вторую часть топливного бака), определяют количество подаваемого ТН из условия испарения оставшихся капель компонентов РТ. Устройство для увода отделяющейся части ракеты-носителя содержит топливные баки окислителя и горючего, систему наддува баков, газовый ракетный двигатель с системами питания и газификации, магистрали с акустическими излучателями (рассчитанными из условия минимальных массовых затрат на газификацию заданными количеством топлива и давления), разделительную сетку (рассчитанную от значения силы поверхностного натяжения). Изобретение позволяет снизить энергетические затраты на газификацию заданного количества остатков компонентов РТ. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относятся к ракетно-космической технике, в частности к ракетам космического назначения (РКН) с маршевыми жидкостными ракетными двигателями (ЖРД), и могут быть использованы для разработки автономных бортовых систем спуска (АБСС) отделяющихся частей (04) ступеней РКН на основе газификации остатков невыработанных жидких компонентов ракетного топлива (КРТ).

Известен способ нейтрализации токсичных компонентов ракетного топлива на основе азотной кислоты и несимметричного диметилгидразина в отделяющейся части ракеты, защищенный патентом РФ №2028468.

Способ включает следующие операции: после останова ЖРД часть жидкого НДМГ подают в магистраль окислителя низкого давления, а газообразные продукты разложения окислителя при достижении предельно допустимого давления в баке окислителя направляют в бак с остатками НДМГ и осуществляют сброс газифицированных продуктов в окружающее пространство.

Устройство для осуществления данного способа содержит: шар-баллон с мембраной и автоматикой для подачи НДМГ, соединительную магистраль бака окислителя и бака горючего с клапанами.

Недостатком данного способа и устройства для его осуществления является невозможность использования газифицированных КРТ в газовом ракетном двигателе для АБСС.

Наиболее близким по технической сущности к предлагаемому способу и устройству для его осуществления является способ увода отделившейся части ракеты-носителя с орбиты полезной нагрузки и двигательная установка для его осуществления (патент РФ на изобретение №2406856 от 11.06.2008 г. Опуб. 20.12.2010. Бюл. №35).

Способ включает обеспечение вращения ОЧ ступени РКН вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, газификацию жидких остатков невыработанных КРТ в баках окислителя и горючего, обеспечение тормозного импульса за счет их сгорания в камере газового ракетного двигателя (ГРД) и высокоскоростное истечение продуктов сгорания в космическое пространство.

Устройство для осуществления способа представляет собой двигательную установку (ДУ), включающую в свой состав топливные баки окислителя и горючего, систему наддува баков, ГРД с системой питания и системой газификации остатков КРТ. Система питания содержит устройства отбора газа, снабженные пиромембранами, которые подсоединены к коллектору ГРД.

Недостатком этого технического решения является повышенный расход теплоносителя (ТН), подаваемого в объем топливного бака, за счет неопределенности граничного положения остатков топлива в баках, значительные (до 50%) потери тепла, которые идут на нагрев стенок баков конструкции с последующим сбросом тепла в окружающее космическое пространство.

Заявляемое техническое решение направлено на снижение энергетических затрат на газификацию заданного количества остатков КРТ в условиях неопределенности граничного положения жидких остатков КРТ, обусловленных резким падением перегрузки после выключения маршевого ЖРД, упругой деформацией нижнего днища (возврат из положения прогиба за счет перегрузки и наличия давления столба жидкости в исходное состояние) и дальнейшим состоянием невесомости.

На фиг. 1 представлена общая схема расположения элементов системы газификации.

Указанный технический результат достигается за счет того, что в способе увода ОЧ ступени ракеты-носителя, основанном на вращении 04 ступени РКН вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, газификации жидких остатков невыработанных КРТ в баках окислителя и горючего, обеспечении тормозного импульса за счет их сгорания в камере ГРД и высокоскоростного истечения продуктов сгорания в космическое пространство согласно заявленному изобретению в нижней части топливного бака (4) ограничивают объем, включающий в себя массу невыработанных остатков (1) КРТ в окрестности заборного устройства путем установки разделительной сетки (3), секундный массовый расход ТН, подаваемого в топливный бак через магистрали (5), разделяют на 2 части, одна часть ТН подается в объем, ограниченный сеткой, с обеспечением вихревой картины течения из условия создания максимальной теплоотдачи и максимального времени пребывания ТН в этом объеме, а вторая часть ТН подается во вторую часть топливного бака с обеспечением встречных потоков смеси, поступающей из объема ограниченного разделительной сеткой, количество подаваемого ТН в верхнюю часть топливного бака определяют из условия испарения всех оставшихся капель КРТ к моменту времени выхода газифицированных продуктов из топливного бака. ТН в выделенные области подают через магистрали, на конце которых установлены акустические излучатели (2), при этом количество и координаты точек ввода ТН, направление ввода, параметры акустических излучателей определяются из условия минимальных массовых затрат на газификацию заданного количества топлива при заданном давлении газифицированных продуктов в баке в течение всего процесса газификации, и по достижению заданного давления в топливном баке открывают клапан на магистрали подачи газифицированных продуктов, например в газовый ракетный двигатель.

Технический результат в части устройства достигается за счет того, что ДУ, включающая в свой состав топливные баки окислителя и горючего, систему наддува баков, ГРД с системой питания и системой газификации остатков компонентов ракетного топлива, согласно заявляемому изобретению дополнительно в нижней части топливного бака введена разделительная сетка с размерами ячейки в несколько десятков микрон, при этом соотношение объемов ограниченного сеткой нижней части бака с объемом всего бака находится в интервале 1:5.

Такое расположение разделительной сетки обусловлено массой невыработанных остатков КРТ, включающих в себя: гарантированные запасы КРТ, конструктивный незабор КРТ, рабочие запасы КРТ, заливку двигателя РКН, что составляет величину, превышающую минимально возможный объем остатков КРТ в 3 раза, плюс отклонение от максимально возможного объема остатков КРТ:

,

где Vc - объем, ограниченный сеткой, включающий в себя массу невыработанных остатков КРТ;

- минимально возможный объем остатков КРТ;

σ - среднеквадратичное отклонение от номинального значения остатков КРТ.

где σ - среднеквадратичное отклонение, σi - текущее отклонение, P - частота появления данного отклонения, m - количество текущих начений, n - общее количество отклонений.

Размер ячейки сетки определяется физическими параметрами топлива и ускорением, которому подвержена жидкость после разделение ступеней. На фиг. 2 представлена структура сетчатого фазоразделителя. Расчет размера ячейки сводится к расчету капиллярного эффекта:

Fa=FH

FH=σ·2πr·cosΘ

Fa=phr2α

где, r - радиус капиллярного отверстия в сетке, σ - сила поверхностного натяжения жидкости, Θ - угол смачивания жидкости, ρ - плотность жидкости, h - высота столба жидкости над сеткой, α - ускорение жидкости при движении по направлению к сетке, Fα - сила, с которой жидкость воздействует на элемент сетки, FH - сила поверхностного натяжения.

Реализация предложенного технического решения осуществляется следующим образом:

1) Установка разделительной сетки в нижней части бака позволяет сосредоточить остатки жидких КРТ в заданной области, в противном случае они бы заняли неопределенное положение, например газокапельная смесь в объеме бака, течения по стенке и ряд других граничных и фазовых состояний в объеме топливного бака после выключения маршевого ЖРД из-за резкого спада перегрузки до нулевых значений, упругих перемещений нижнего днища бака из нагруженного состояния в исходное.

2) Размер ячеек сетки определяется из условия протекания КРТ при действии перегрузки, давления наддува, при допустимом гидродинамическом сопротивлении, т.е. не оказывающим влияние на секундный расход КРТ на активном участке полета. После выключения маршевого ЖРД зеркало поверхности КРТ всегда ниже уровня сетки. При сбросе тяги маршевого ЖРД воздействия упругого днища остатки КРТ получают импульс, направленный на разрушение свободной поверхности жидкости с их перемещением к верхнему днищу. За счет наличия адгезионных сил между стенками сетки и жидкости, жидкость не проходит через сетку (в кн. Основы теории и расчета жидкостных ракетных двигателей. Учеб. Для авиац. Спец. Вузов/А.П. Васильев, В.М. Кудрявцев, В.А. Кузнецов и др. кн.2, стр.137-139, 275-284). В зависимости от величины импульса обратной перегрузки (он носит кратковременный характер и его величина незначительна) часть капель выдавливается через сетку.

В настоящее время эти сетки выпускаются российской промышленностью, в частности, используются для аналогичных целей в системе повторного запуска ЖРД второй ступени 11Д49 на РКН «Космос-3М» для фазового разделения.

Размер ячеек разделительной сетки выбирается в зависимости от типа жидких остатков КРТ (несимметричный диметилгидразин, керосин, азотная кислота и т.д.), что связано с коэффициентом поверхностного натяжения каждого из компонентов.

Подача ТН в объем бака, либо в область наиболее вероятного расположения максимального количества остатков КРТ приводит к большим потерям тепла на нагрев бака (до 50%) и его сбросу в космос.

3) Разделение общего потока ТН на 2 части позволяет решить ряд следующих задач:

1. В нижней части бака, ограниченной сеткой, возникает возможность обеспечить:

- условия для максимальной теплопередачи от ТН непосредственно к жидкости за счет создания вихревого течения (увеличение коэффициентов тепло и массообмена);

- увеличить в несколько раз время нахождения частиц ТН непосредственно в контакте с жидкостью;

- многократно сократить потери тепла на нагрев конструкции из-за сокращения поверхности взаимодействия со стенками бака.

2. В верхней части бака:

- поток ТН взаимодействует с жидкими остатками КРТ, масса которых во много раз меньше (жидкость на элементах конструкции, капли жидкости, выбрасываемыми через разделительную сетку из нижней части бака), поэтому количество тепла для газификации этой части жидкости требуется значительно меньше, чем в нижней части бака, соответственно, и потерь от подаваемого в эту часть объема бака тепла на нагрев стенок бака будет меньше;

- для предотвращения процесса конденсации газифицированного КРТ в этой части бака также требуются дополнительные затраты тепла. Газодинамическая картина течения теплоносителя через сетчатый фазоразделитель представлен на фиг. 3.

4) Установка акустических излучателей на магистралях подвода ТН в баки приводит к дополнительному полевому воздействию на процесс газификации, и в ряде случаев для многофазных сред коэффициенты тепло- и массообмена могут возрастать в несколько раз, однако эффективное использование этого дополнительного воздействия требует:

- выбора оптимальной интенсивности акустического излучения (частоты, интенсивность);

- оптимальной ориентации диаграммы акустического излучателя с учетом отраженного излучения от стенок конструкции. На фиг. 4 представлена зона действия акустического излучателя.

Имеется ряд работ, например B.C.Будник B.C., Ю.Ф.Даниев, Н.Ф.Свириденко «Обобщенный энергетический подход к организации тепломассообменных процессов в свободном газовом объеме топливных баков жидкостных ракет//Техническая механика №1998», в которых указывается на возможность возникновения синергетического эффекта в подобных системах за счет выбора оптимального сочетания воздействий массопритока и полевого воздействия.

5) Критерий определения параметров при заданном давлении.

Основная задача, решаемая в рассматриваемом способе, заключается в реализации процесса газификации жидкости с обеспечением заданной массовой скорости истечения газифицированных продуктов при поддержании постоянного давления не менее заданного в баке с открытым клапаном, так как эти газифицированные продукты поступают в газовый ракетный двигатель, при минимальных затратах ТН.

Например, при заданном времени газификации 50 сек и величине остатка КРТ 300 кг, начальном давлении 1 атм, заданном давлении 3 атм средняя скорость испарения КРТ 6 кг/сек, но в начале она будет меньше из-за начальной температуры, например, 40С°, поэтому требуется время на прогрев, а потом скорость испарения будет возрастать, однако при увеличении давления с 1 до 3 атм скорость будет падать.

Скорость подачи ТН можно снизить при дополнительном введении действий предлагаемого способа:

- параметры акустического воздействия;

- установки устройств ввода в бак в виде 4 магистралей и ориентацией диаграммы направленности ГСИ;

- установки разделительной сетки с ячейками.

6) В результате газификации жидких остатков КРТ в баках горючего и окислителя при соответствующих давлениях, необходимых для обеспечения стехиометрического соотношения, они подаются в газовый ракетный двигатель АБСС для отработки импульса, например на орбиту спуска.

Работа предлагаемого способа и устройства поясняется на чертежах.

Фиг.1 - Размещение в топливном баке элементов системы газификации.

Фиг.2 - Структура сетки.

Фиг.3 - Картина течения ТН в баке.

Фиг.4 - Зоны действия акустического излучателя.


СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 161.
27.04.2016
№216.015.38c3

Способ производства выстрела в пневматической метательной конструкции и устройство для его осуществления

Изобретение относится к области метательных устройств, а именно к способам и устройствам производства выстрела в пневматической метательной конструкции. Способ заключается в том, что в рабочий объем цилиндра перед выстрелом вместе с воздухом подается жидкое топливо с образование рабочей смеси...
Тип: Изобретение
Номер охранного документа: 0002582754
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39d6

Порошковая проволока

Изобретение относится к порошковым проволокам. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты, содержит компоненты в следующем соотношении, мас.%: плавиковый шпат 1,0-2,0; феррохром 20,0-24,0; ферромолибден 0,5-2,0; карбид бора 4,0-12,0; железный порошок 0-16,5;...
Тип: Изобретение
Номер охранного документа: 0002582402
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b5f

Малогабаритная резонансная рамочная коаксиальная антенна

Изобретение относится к области антенной техники и может быть использовано в приемопередающей радиоаппаратуре, преимущественно в средневолновых и коротковолновых системах радиосвязи. Технический результат изобретения заключается в повышении мощности излучения при сохранении малых габаритов...
Тип: Изобретение
Номер охранного документа: 0002583758
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d2a

Снаряд с газовым подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть, в которой выполнена полость питания для создания давления в несущем газовом слое, соединенная с наружной цилиндрической поверхностью через питающие...
Тип: Изобретение
Номер охранного документа: 0002583529
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.42ec

Магнитоэлектрическая машина

Изобретение относится к области электротехники, в частности к электрогенераторам постоянного тока. Технический результат - повышение рабочего магнитного потока. Магнитоэлектрическая машина содержит ротор с постоянными магнитами и статор, представляющий собой магнитопровод с пазами, в которых...
Тип: Изобретение
Номер охранного документа: 0002585279
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ae

Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для снижения площадей районов падения отделяющихся частей (ОЧ) ракет космического назначения (РКН). В способе минимизации зон отчуждения ОЧ определяют дополнительное количество теплоты, необходимое для сжигания ОЧ при...
Тип: Изобретение
Номер охранного документа: 0002585395
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43c7

Стабилизированный электропривод

Изобретение относится к области электротехники и может быть использовано в системах передачи и воспроизведения информации, например в приводе устройств видеозаписи и в обзорно-поисковых и сканирующих системах. Техническим результатом является повышение быстродействия при переходе в режиме...
Тип: Изобретение
Номер охранного документа: 0002585241
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4550

Способ изготовления зубчатого колеса

Изобретение относится к области машиностроения. В способе вначале при электроэрозионной обработке заготовки формируют требуемый профиль зубчатого колеса, а после путем его электрохимической обработки обеспечивают требуемые параметры поверхности. Электроэрозионную обработку осуществляют на...
Тип: Изобретение
Номер охранного документа: 0002586936
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4b3b

Система датчиков для магнитотеллурического зондирования земли

Изобретение относится к геофизике. Сущность: система датчиков электрического и магнитного поля для измерения магнитотеллурического поля Земли состоит из двух пар заглубленных электродов с единой базой L. Одна пара электродов размещена в приповерхностном слое земли, а другая пара электродов...
Тип: Изобретение
Номер охранного документа: 0002594641
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4bd9

Свая

Изобретение относится к строительству, а именно к конструкциям висячих свай, в том числе из бетона и железобетона. Предложена свая повышенной несущей способности сплошного сечения, цельной или составной, с поперечным армированием ствола. Поперечное сечение сваи выполнено в виде равностороннего...
Тип: Изобретение
Номер охранного документа: 0002594499
Дата охранного документа: 20.08.2016
Показаны записи 101-110 из 181.
27.04.2016
№216.015.3811

Способ производства плодового десерта

Изобретение относится к молочной промышленности, а именно к продуктам на основе молочной сыворотки, и может быть использовано предприятиями молочной промышленности для изготовления продуктов профилактической направленности. Способ заключается в том, что составляют смесь из жидкой молочной...
Тип: Изобретение
Номер охранного документа: 0002582809
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38c3

Способ производства выстрела в пневматической метательной конструкции и устройство для его осуществления

Изобретение относится к области метательных устройств, а именно к способам и устройствам производства выстрела в пневматической метательной конструкции. Способ заключается в том, что в рабочий объем цилиндра перед выстрелом вместе с воздухом подается жидкое топливо с образование рабочей смеси...
Тип: Изобретение
Номер охранного документа: 0002582754
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39d6

Порошковая проволока

Изобретение относится к порошковым проволокам. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты, содержит компоненты в следующем соотношении, мас.%: плавиковый шпат 1,0-2,0; феррохром 20,0-24,0; ферромолибден 0,5-2,0; карбид бора 4,0-12,0; железный порошок 0-16,5;...
Тип: Изобретение
Номер охранного документа: 0002582402
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b5f

Малогабаритная резонансная рамочная коаксиальная антенна

Изобретение относится к области антенной техники и может быть использовано в приемопередающей радиоаппаратуре, преимущественно в средневолновых и коротковолновых системах радиосвязи. Технический результат изобретения заключается в повышении мощности излучения при сохранении малых габаритов...
Тип: Изобретение
Номер охранного документа: 0002583758
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d2a

Снаряд с газовым подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть, в которой выполнена полость питания для создания давления в несущем газовом слое, соединенная с наружной цилиндрической поверхностью через питающие...
Тип: Изобретение
Номер охранного документа: 0002583529
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.42ec

Магнитоэлектрическая машина

Изобретение относится к области электротехники, в частности к электрогенераторам постоянного тока. Технический результат - повышение рабочего магнитного потока. Магнитоэлектрическая машина содержит ротор с постоянными магнитами и статор, представляющий собой магнитопровод с пазами, в которых...
Тип: Изобретение
Номер охранного документа: 0002585279
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ae

Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для снижения площадей районов падения отделяющихся частей (ОЧ) ракет космического назначения (РКН). В способе минимизации зон отчуждения ОЧ определяют дополнительное количество теплоты, необходимое для сжигания ОЧ при...
Тип: Изобретение
Номер охранного документа: 0002585395
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43c7

Стабилизированный электропривод

Изобретение относится к области электротехники и может быть использовано в системах передачи и воспроизведения информации, например в приводе устройств видеозаписи и в обзорно-поисковых и сканирующих системах. Техническим результатом является повышение быстродействия при переходе в режиме...
Тип: Изобретение
Номер охранного документа: 0002585241
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4550

Способ изготовления зубчатого колеса

Изобретение относится к области машиностроения. В способе вначале при электроэрозионной обработке заготовки формируют требуемый профиль зубчатого колеса, а после путем его электрохимической обработки обеспечивают требуемые параметры поверхности. Электроэрозионную обработку осуществляют на...
Тип: Изобретение
Номер охранного документа: 0002586936
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4b3b

Система датчиков для магнитотеллурического зондирования земли

Изобретение относится к геофизике. Сущность: система датчиков электрического и магнитного поля для измерения магнитотеллурического поля Земли состоит из двух пар заглубленных электродов с единой базой L. Одна пара электродов размещена в приповерхностном слое земли, а другая пара электродов...
Тип: Изобретение
Номер охранного документа: 0002594641
Дата охранного документа: 20.08.2016
+ добавить свой РИД