×
10.07.2014
216.012.db3d

Результат интеллектуальной деятельности: СИСТЕМА, РАБОТАЮЩАЯ ПО ОРГАНИЧЕСКОМУ ЦИКЛУ РЕНКИНА, ПОВЕРХНОСТНО-ОБРАБОТАННАЯ ПОДЛОЖКА И СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ КИПЕНИЯ ТЕПЛООБМЕННИКА

Вид РИД

Изобретение

№ охранного документа
0002521903
Дата охранного документа
10.07.2014
Аннотация: Изобретение относится к области теплотехники и может быть использовано в системах теплообмена, предназначенных для восстановления и использования отработанного тепла. Система, работающая по органическому циклу Ренкина, для восстановления и использования отработанного тепла, поступающего от источника отработанного тепла, с помощью замкнутого контура рабочей текучей среды содержит по меньшей мере один испаритель. Указанный испаритель дополнительно содержит поверхностно-обработанную подложку для содействия пузырьковому кипению рабочей текучей среды с обеспечением ограничения температуры рабочей текучей среды до значения ниже заданной температуры. Кроме того, испаритель выполнен с обеспечением испарения рабочей текучей среды путем использования отработанного тепла, поступающего от источника отработанного тепла. Технический результат - уменьшение размеров, снижение стоимости и повышение эффективности системы. 3 н. и 18 з.п. ф-лы, 3 ил.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0001] Изобретение относится в целом к теплообменнику в органическом цикле Ренкина и, более конкретно, к теплообменнику с поверхностно-обработанной подложкой для достижения повышенной эффективности теплообмена.

[0002] Большинство систем, работающих по органическому циклу Ренкина (ОЦР), используется в качестве модернизаций малых и средних газовых турбин для обеспечения поглощения дополнительной мощности в верхней части выхода основного тракта турбины из потока горячих отработанных газов газовых турбин. Рабочая текучая среда, используемая в этих циклах, обычно представляет собой углеводород, температура кипения которого немного превышает температуру, определенную Международной Организацией по Стандартизации (ISO), при атмосферном давлении. Из-за опасения, что такие углеводородные текучие среды могут разрушаться при непосредственном воздействии высокой температуры (≈500°C) выхлопного потока газовой турбины, обычно используется промежуточный термомасляный контур, обеспечивающий передачу тепла от выпуска к котлу, работающему по циклу Ренкина. Термомасляный контур требует дополнительных капитальных затрат, которые могут составлять до одной четверти стоимости полного цикла. Кроме того, встраивание термомасляного контура вызывает значительное уменьшение применимого уровня температуры источника тепла. Более того, промежуточная гидравлическая система и теплообменники требуют более высокой разницы температур, что приводит к увеличению размеров и снижению общей эффективности.

[0003] Таким образом, желательно создание усовершенствованной системы, работающей по органическому циклу Ренкина (ОЦР), обеспечивающей решение вышеупомянутых проблем.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] В соответствии с вариантом выполнения данного изобретения предложена система, работающая по органическому циклу Ренкина, предназначенная для восстановления и использования отработанного тепла, поступающего от источника отработанного тепла, с помощью замкнутого контура рабочей текучей среды. Указанная система содержит по меньшей мере один испаритель. Указанный испаритель дополнительно содержит поверхностно-обработанную подложку для содействия пузырьковому кипению рабочей среды с обеспечением ограничения температуры рабочей текучей среды до значения ниже заданной температуры. Кроме того, испаритель выполнен с обеспечением испарения рабочей среды путем использования отработанного тепла, поступающего от источника отработанного тепла.

[0005] В соответствии с другим вариантом выполнения изобретения предложена поверхностно-обработанная подложка для содействия пузырьковому кипению рабочей текучей среды с обеспечением ограничения температуры рабочей текучей среды в теплообменнике до значения ниже заданной температуры. Поверхностно-обработанная подложка содержит частицы или волокна, предназначенные для содействия образованию пузырьков в рабочей среде и находящиеся во взвешенном состоянии в растворе связующего материала. Указанная подложка дополнительно содержит теплопроводное связующее вещество для связывания частиц или волокон.

[0006] В соответствии с еще одним вариантом выполнения изобретения предложен способ обработки поверхности кипения теплообменника для содействия пузырьковому кипению потока рабочей текучей среды, проходящего через теплообменник, с обеспечением ограничения температуры рабочей текучей среды до значения ниже заданной температуры. Указанный способ включает подготовку поверхности теплообменника для получения одной или более неоднородностей. Способ также включает нанесение слоя покрытия на поверхность теплообменника.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0007] Эти и другие особенности, аспекты и преимущества данного изобретения станут более понятны при прочтении нижеследующего подробного описания, приведенного со ссылкой на прилагаемые чертежи, на которых одинаковые элементы обозначены одинаковыми номерами позиций и на которых:

[0008] Фиг.1 изображает принципиальную схему варианта выполнения системы, работающей по органическому циклу Ренкина и содержащей испаритель прямого действия.

[0009] Фиг.2 изображает вид в аксонометрии трубки теплообменника, на котором части трубки вырезаны для отображения поверхностно-обработанной подложки в соответствии с иллюстративным вариантом выполнения изобретения.

[0010] Фиг.3 иллюстрирует блок-схему способа создания обработанной поверхности на стороне кипения трубки теплообменника.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0011] Данные технологии в целом относятся к системам, работающим по органическому циклу Ренкина, для восстановления и использования отработанного тепла, поступающего от источника отработанного тепла, с помощью замкнутого контура рабочей текучей среды. В частности, вариант выполнения такой системы содержит теплообменник с поверхностно-обработанной подложкой для содействия пузырьковому кипению рабочей текучей среды с обеспечением ограничения температуры рабочей текучей среды до значения ниже заданной температуры. Данная технология также относится к способу обработки поверхности кипения теплообменника для содействия пузырьковому кипению потока рабочей текучей среды, проходящего через теплообменник.

[0012] При введении элементов различных вариантов выполнения использование их названий в единственном числе означает, что имеется один или более элементов. Термины «содержащий», «включающий» и «имеющий» являются охватывающими и означают, что могут иметься дополнительные элементы, отличные от перечисленных. Любые примеры рабочих параметров не являются исключительными по отношению к другим параметрам описываемых вариантов выполнения.

[0013] Фиг.1 изображает принципиальную схему иллюстративного варианта выполнения системы 10, работающей по органическому циклу Ренкина и предназначенной для восстановления и использования отработанного тепла, поступающего от источника отработанного тепла, с помощью замкнутого контура рабочей текучей среды 14. В системе 10 используется органическая рабочая текучая среда 14 с высокой молекулярной массой, обеспечивающая возможность восстановления тепла из тепловых источников, к которым относятся потоки выхлопных газов от газовых турбин. В одном варианте выполнения система 10 может выполнять восстановление тепла из низкотемпературных источников, например, промышленного отработанного тепла, геотермального тепла, солнечных прудов и т.д. Кроме того, система 10 превращает низкотемпературное тепло в полезную работу, которая затем может быть превращена в электрическую энергию. Это осуществляется путем использования по меньшей мере одной турбины 16 для расширения рабочей среды 14, так что обеспечивается создание мощности на валу и получение расширенной рабочей текучей среды 22. Указанная турбина 16 может представлять собой двухступенчатую радиальную турбину для расширения рабочей среды 14. Во время расширения рабочей среды 14 значительная часть тепловой энергии, восстановленной из испарителя 12 прямого действия, превращается в полезную работу. Расширение рабочей среды 14 в турбине 16 приводит к понижению температуры и давления указанной среды 14.

[0014] Далее расширенная рабочая текучая среда 22 поступает в конденсатор 18 для конденсации с помощью охлаждающей текучей среды, протекающей через указанный конденсатор 18, с обеспечением получения конденсированной рабочей среды 24 при еще более низком давлении. В одном варианте выполнения конденсация расширенной рабочей среды 22 может выполняться с помощью воздуха, находящегося при температуре окружающей среды. Поток воздуха при температуре окружающей среды может быть получен с помощью вентилятора или воздуходувки, в результате чего происходит понижение температуры на величину, которая может достигать приблизительно 40°C. В другом варианте выполнения конденсатор 18 может использовать в качестве охлаждающей текучей среды охлаждающую воду. Конденсатор 18 может содержать типовой теплообменник с многочисленными трубчатыми проходами, обеспечивающими прохождение через них расширенной рабочей среды 22. В одном варианте выполнения для продувания окружающего воздуха через теплообменную секцию используется вентилятор с двигателем. Во время такого процесса скрытая теплота расширенной рабочей среды 22 выделяется и передается охлаждающей текучей среде, используемой в конденсаторе 18. Расширенная рабочая среда 22, таким образом, конденсируется до конденсированной рабочей текучей среды 24, находящейся в жидкой фазе при еще более низкой температуре и давлении.

[0015] Давление конденсированной рабочей среды 24 затем повышается от низкого давления до высокого давления с помощью насоса 20. После этого сжатая рабочая текучая среда 26 может поступить в испаритель прямого действия или бойлер 12 и пройти через многочисленные трубки, проточно сообщающиеся с замкнутым контуром рабочей текучей среды 14, как показано на фиг.1. Указанный испаритель 12 может иметь каналы для отработанных газов, поступающих от источника отработанного тепла, для непосредственного нагревания сжатой рабочей среды 26, проходящей через многочисленные трубки в испарителе 12.

[0016] Сжатая рабочая среда 26, поступающая в испаритель 12, может содержать углеводород с низкой температурой кипения. Термодинамические характеристики, такие как высокая температурная стабильность рабочей среды 14 в испарителе 12 прямого действия системы 10, может быть трудно поддерживать, поскольку на температуру рабочей среды 14 может воздействовать пороговая температура разрушения на поверхности теплообменника в трубках испарителя 12, что приводит к тепловому разложению рабочей среды 14. В одном варианте выполнения испаритель 12 или конденсатор 18 системы 10 может представлять собой типичный теплообменник, используемый в цикле теплового двигателя.

[0017] Фиг.2 изображает вид в аксонометрии трубки 30 испарителя прямого действия, на котором части трубки вырезаны для отображения поверхностно-обработанной подложки 32 в соответствии с иллюстративным вариантом выполнения изобретения. Испаритель 12 прямого действия, показанный на фиг.1, может содержать многочисленные трубки 30. Поверхностно-обработанная подложка 32 в трубке 30 испарителя способствует пузырьковому кипению рабочей текучей среды с обеспечением ограничения температуры рабочей среды 14 (фиг.1) до значения ниже заданной температуры. Следовательно, возникновение высоких температур на поверхности 38 кипения стенок трубок испарителя 12 предотвращается путем использования указанной подложки 32, предназначенной для содействия пузырьковому кипению, которое дополнительно увеличивает интенсивность теплового потока в процессе кипения для обеспечения достижения лучшего охлаждения поверхности 38 кипения трубки 30 испарителя. Таким образом, данная технология улучшает передачу тепла от нагретой поверхности испарителя прямого действия к кипящей рабочей среде 14. Явление пузырькового кипения, вызываемое с помощью поверхностно-обработанной подложки 32, подробно рассмотрено ниже.

[0018] В одном варианте выполнения поверхностно-обработанная подложка 32 имеет покрытие 36, нанесенное на поверхность кипения 38 трубки 30 испарителя прямого действия и используемое для содействия пузырьковому кипению рабочей текучей среды с обеспечением ограничения тем самым температуры рабочей среды до значения ниже заданной температуры в указанном испарителе 12. В одном варианте выполнения заданная температура рабочей среды 14 может изменяться от 200°C до 300°C. Поверхностно-обработанная подложка 32 может содержать многочисленные частицы или волокна 34, находящиеся во взвешенном состоянии в связующем веществе. В одном варианте выполнения поверхностно-обработанная подложка 32 также может содержать многочисленные волокна, находящиеся во взвешенном состоянии в связующем веществе. При работе указанные частицы или волокна 34 действуют в качестве зародышей для образования пузырьков, когда необходимо обеспечить испарение рабочей среды. Это приводит к образованию большего числа местоположений, в которых образуются пузырьки пара, с созданием в то же время большего потока тепла, поскольку известно, что поток тепла к текучей среде, в которой происходит фазовое изменение, почти на порядок выше, чем передача тепла к текучей среде вследствие конвекции. Более высокий поток тепла помогает охладить поверхность теплообменника более эффективно, что приводит к более низкой равновесной температуре поверхности теплообменника, так как коэффициент теплопередачи на горячей стороне остается почти таким же. Кроме того, поток тепла слегка возрастает благодаря более высокому температурному градиенту. Металлические частицы 34, действующие в качестве зародышей испарения, также помогают разрушить адгезионную связь пузырьков с поверхностью теплообменника, так что пузырьки пара отрываются от поверхности, будучи еще небольшими, в результате чего поток тепла на более холодной стороне стенки теплообменника дополнительно возрастает. Такие зародыши испарения не только способствуют пузырьковому кипению, но также повышают смачиваемость поверхности по сравнению с гладкой поверхностью и, таким образом, подавляют возникновение пленочного кипения. Другой положительный эффект улучшения отделения пузырьков пара от поверхности кипения состоит в том, что это препятствует объединению пузырьков в непрерывную пленку пара, которая бы в противном случае значительно снизила конвективную теплопередачу, так как такая теплопередача в слое пара на порядок меньше, чем в жидкой пленке.

[0019] Напротив, в случае гладкой поверхности кипения существует лишь несколько точек образования пузырьков, и вследствие сжимающей силы поверхностного натяжения жидкости на очень маленьком пузырьке для начала роста пузырьков требуется большая степень перегрева. Тепло для роста пузырька должно передаваться вследствие конвекции и проводимости от гладкой поверхности кипения к отдаленной границе раздела жидкость-пар пузырька, который почти полностью окружен основной массой жидкости. Таким образом, можно сказать, что неоднородная поверхность стенки теплообменника, имеющаяся вследствие наличия поверхностно-обработанной подложки, увеличивает поток тепла на стороне кипения или испарения, что приводит к низким температурам стенки теплообменника или испарителя 12 прямого действия, показанного на фиг.1, результатом чего в свою очередь являются более низкие скорости разложения рабочей среды 14 в ОЦР.

[0020] В одном варианте выполнения размер частиц может изменяться от 1 мкм до 100 мкм. Отделение пузырьков пара от поверхности 38 кипения дополнительно улучшается благодаря покрытию 36, в результате чего увеличивается площадь активной поверхности теплопередачи, что дополнительно приводит к более высокому потоку тепла. Поверхностно-обработанная подложка 32 также содержит теплопроводное связующее вещество для связывания многочисленных частиц или волокон 34. В другом варианте выполнения теплопроводное связующее вещество содержит материал с высокой теплопроводностью, изменяющейся от 1 Вт·м-1·К-1 до 300 Вт·м-1·К-1. В еще одном варианте выполнения волокна 34 содержат стекловолокно, кварц, минеральные кристаллы и металлические соединения. В еще одном варианте выполнения волокна 34 могут содержать керамические соединения.

[0021] Кроме того, в одном варианте выполнения покрытие 36 может иметь гидрофильный слой, который дополнительно содержит имплантированные ионы. Имплантация ионов может изменять поверхностную энергию и, таким образом, влияет на то, является ли поверхность гидрофильной или гидрофобной. В другом варианте выполнения многочисленные ионы могут содержать ионы на основе азота. Ионы на основе азота являются одним из наиболее распространенных классов ионов, которыми поверхность может быть насыщена для обеспечения содействия адгезии жидкости.

[0022] Фиг.3 изображает блок-схему 40, иллюстрирующую различные варианты выполнения подготовки обработанной поверхности 42 на поверхности 38 кипения трубки 30 испарителя прямого действия, показанной на фиг.2. Блок-схема 40 главным образом иллюстрирует способ обработки поверхности 38 кипения испарителя 12 прямого действия (фиг.1) для содействия пузырьковому кипению потока рабочей среды через трубку 30 указанного испарителя. В одном варианте выполнения, как отображено с помощью блока 44, проиллюстрирован способ подготовки поверхности теплообменника или испарителя 12. В другом варианте выполнения, как отображено с помощью блока 46, проиллюстрирован способ нанесения покрытия 36, показанного на фиг.2, на поверхность 38 кипения трубки 30 испарителя прямого действия или теплообменника. В дополнительном варианте выполнения покрытие 38 может быть наслоено на поверхность 38 кипения трубки 30, где происходит испарение сжатой рабочей среды. В еще одном варианте выполнения подготовка поверхности стенки испарителя для получения неоднородностей может включать химическое травление, как отображено в блоке 48. В еще одном варианте выполнения подготовка поверхности стенки испарителя для получения неоднородностей может включать механическую обработку, как показано в блоке 50. Механическая обработка включает по меньшей мере один из процессов прокатки, фрезерования, шлифовки или обточки.

[0023] В другом варианте выполнения нанесение покрытия на поверхность 38 кипения трубки 30 испарителя или теплообменника включает распыление многочисленных частиц или волокон на поверхности теплообменника, как проиллюстрировано в блоке 52 на фиг.3. В конкретном варианте выполнения многочисленные частицы 34, показанные на фиг.2, могут содержать металлические частицы. В еще одном варианте выполнения нанесение покрытия на поверхность 38 кипения трубки 30 испарителя или теплообменника включает спекание, как проиллюстрировано в блоке 54 на фиг.3. В конкретном варианте выполнения спекание 54 может включать нагревание металлических частиц до температуры ниже точки плавления до тех пор, пока они не прилипнут друг к другу или не сплавятся друг с другом. При работе частицы или волокна 34 могут действовать в качестве зародышей для пузырькового кипения, так что вместо больших пузырьков образуется большее количество мелких пузырьков пара. Это явление приводит к увеличению потока тепла через стенку теплообменника испарителя 12.

[0024] Преимущественно в данном изобретении применяется поверхностно-обработанная подложка, содержащая покрытие, или механически обработанную поверхность, или химически обработанную поверхность, в испарителе прямого действия системы, работающей по органическому циклу Ренкина, для получения существенной эффективности теплопередачи от поверхности кипения или испарения теплообменника к рабочей среде 14. Таким образом, температура поверхности кипения теплообменника или испарителя 12 прямого действия остается относительно низкой, что предотвращает разложение рабочей среды 14. Другое преимущество данного изобретения заключается в устранении промежуточного замкнутого термомасляного контура, что делает данное изобретение менее сложным и экономически выгодным. Благодаря устранению замкнутого термомасляного контура капитальные затраты в системе с ОЦР могут быть снижены на одну четверть от величины общих затрат.

[0025] Следует понимать, что все такие цели или преимущества, описанные выше, не обязательно могут быть достигнуты в соответствии с каким-либо конкретным вариантом выполнения. Таким образом, например, специалистам должно быть понятно, что устройства и способы, описанные в данном документе, могут быть реализованы или выполнены таким образом, который обеспечивает достижение или оптимизацию одного преимущества или группы преимуществ, указанных в данном документе, без обязательного достижения других целей или преимуществ, указанных или предполагающихся в данном документе.

[0026] Несмотря на то, что в данном документе проиллюстрированы и описаны только некоторые особенности изобретения, специалистам будут очевидны различные модификации и изменения. Таким образом, следует понимать, что прилагаемая формула изобретения охватывает все такие модификации и изменения, как находящиеся в рамках сущности изобретения.

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ

10 Система, работающая по органическому циклу Ренкина

12 Испаритель прямого действия

14 Рабочая текучая среда

16 Турбина

18 Конденсатор

20 Насос

22 Расширенная рабочая текучая среда

24 Конденсированная рабочая текучая среда

26 Сжатая рабочая текучая среда

30 Трубка испарителя прямого действия

32 Поверхностно-обработанная подложка

34 Частицы или волокна

36 Покрытие

38 Поверхность кипения

40 Способ подготовки обработанной поверхности на поверхности кипения трубки испарителя прямого действия

42 Обработанная поверхность

44 Этап подготовки поверхности теплообменника или испарителя прямого действия для получения одной или более неоднородностей

46 Этап нанесения покрытия на поверхность кипения трубки теплообменника или испарителя прямого действия

48 Этап подготовки поверхности стенки испарителя прямого действия для получения неоднородностей путем химического травления

50 Этап подготовки поверхности стенки испарителя прямого действия для получения неоднородностей путем механической обработки

52 Этап нанесения покрытия на поверхность кипения трубки теплообменника или испарителя прямого действия путем распыления многочисленных частиц или волокон

54 Этап нанесения покрытия на поверхность кипения трубки теплообменника или испарителя прямого действия путем спекания.


СИСТЕМА, РАБОТАЮЩАЯ ПО ОРГАНИЧЕСКОМУ ЦИКЛУ РЕНКИНА, ПОВЕРХНОСТНО-ОБРАБОТАННАЯ ПОДЛОЖКА И СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ КИПЕНИЯ ТЕПЛООБМЕННИКА
СИСТЕМА, РАБОТАЮЩАЯ ПО ОРГАНИЧЕСКОМУ ЦИКЛУ РЕНКИНА, ПОВЕРХНОСТНО-ОБРАБОТАННАЯ ПОДЛОЖКА И СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ КИПЕНИЯ ТЕПЛООБМЕННИКА
СИСТЕМА, РАБОТАЮЩАЯ ПО ОРГАНИЧЕСКОМУ ЦИКЛУ РЕНКИНА, ПОВЕРХНОСТНО-ОБРАБОТАННАЯ ПОДЛОЖКА И СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ КИПЕНИЯ ТЕПЛООБМЕННИКА
Источник поступления информации: Роспатент

Показаны записи 61-70 из 356.
10.02.2015
№216.013.251e

Двигатель, содержащий герметичный уплотнительный узел (варианты), и установка, содержащая двигатель

Изобретение относится к области электротехники и может быть использовано в двигателях, например, для нефтегазовой промышленности. Техническим результатом является уменьшение общих потерь в электрической машине. Установка (10) содержит двигатель (20) с ротором (30), статором (40), оболочкой...
Тип: Изобретение
Номер охранного документа: 0002540955
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.2f71

Система производства изотопов с разделенным экранированием

Изобретение относится к области ускорительной техники. Система производства изотопов содержит циклотрон с ярмом магнита, которое окружает ускорительную камеру. Циклотрон выполнен с возможностью направления пучка частиц из ускорительной камеры через ярмо магнита. Система производства изотопов...
Тип: Изобретение
Номер охранного документа: 0002543613
Дата охранного документа: 10.03.2015
27.03.2015
№216.013.35be

Узел обода колеса и способ сборки колеса

Изобретение относится к узлам обода колеса для внедорожных транспортных средств, используемых преимущественно для перевозки тяжелых грузов. Колесный узел содержит цилиндрическую ступицу, проходящую в осевом направлении от первой концевой части до второй концевой части вокруг внутреннего объема....
Тип: Изобретение
Номер охранного документа: 0002545242
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3a0e

Сверхзвуковой компрессор

Изобретение относится к компрессорам и системам, содержащим компрессоры. Cверхзвуковой компрессор содержит впуск для текучей среды, выпуск для текучей среды и по меньшей мере два ротора противоположного вращения. Указанные роторы выполнены последовательно таким образом, что выпуск из первого...
Тип: Изобретение
Номер охранного документа: 0002546350
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c34

Система и способ охлаждения с улавливанием углерода

Охлаждающая система включает систему улавливания углерода, систему охлаждения и устройство управления. Система улавливания углерода предназначена для удаления углеродсодержащего газа из синтез-газа с получением уловленного углеродсодержащего газа. Уловленный углеродсодержащий газ имеет чистоту...
Тип: Изобретение
Номер охранного документа: 0002546900
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d18

Турбинная лопатка (варианты) и ротор

Турбинная лопатка включает удлиненную лопасть, основание и бандажный элемент. Основание расположено на ближнем к месту крепления конце удлиненной лопасти и содержит плоский элемент, выступ и элемент для пазового соединения. Плоский элемент проходит перпендикулярно продольной оси удлиненной...
Тип: Изобретение
Номер охранного документа: 0002547128
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4149

Электромагнитный исполнительный механизм

Изобретение относится к электромагнитным исполнительным механизмам клапанов, обеспечивающим управление работой клапана. Клапан содержит пластину, присоединенную к подвижному механизму, расположенному частично в корпусе. Линейный электромагнитный исполнительный механизм содержит первый набор...
Тип: Изобретение
Номер охранного документа: 0002548211
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.414a

Паровая турбина и устройство для запуска паровой турбины

Предложены паровая турбина и устройство для ее запуска. Паровая турбина (100) содержит группу ступеней, паровой тракт (108), впускное отверстие (104), выпускное отверстие (106), входное отверстие (110), выходное отверстие (112). Паровой тракт (108) проходит через указанную группу ступеней...
Тип: Изобретение
Номер охранного документа: 0002548212
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4282

Испаритель прямого действия, установка для регенерации энергии и способ регенерации энергии

Изобретение относится к энергетике. Испаритель прямого действия для использования в установке для регенерации энергии с циклом Ренкина на органическом носителе содержит корпус с впускным отверстием для газа от теплового источника и выпускным отверстием для газа от теплового источника, причем...
Тип: Изобретение
Номер охранного документа: 0002548524
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.479b

Способ намагничивания ротора электромашины, намагничивающая система для ротора электромашины и способ изготовления ротора электромашины

Изобретение относится к электротехнике, к электрическим машинам. Технический результат состоит в упрощении намагничивания. Способ включает сборку массива ненамагниченных анизотропных сегментов постоянного магнита вокруг шпинделя ротора, заключенного в металлическое кольцо. Затем определяют...
Тип: Изобретение
Номер охранного документа: 0002549835
Дата охранного документа: 27.04.2015
Показаны записи 61-70 из 300.
10.01.2015
№216.013.1aa5

Контейнер для прессования порошка для получения заготовки (варианты) и способ улучшения использования материала во время горячего изостатического прессования

Изобретение относится к способу и контейнеру формования заготовок с использованием горячего изостатического прессования. Способ и контейнер обеспечивают регулирование объема контейнера с получением заготовки заданной формы и размера исходя из выбранной загрузки металлического порошка для...
Тип: Изобретение
Номер охранного документа: 0002538249
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.203b

Устройство прямого испарения и система рекуперации энергии

Изобретение относится к энергетике. Устройство прямого испарения для использования в системе рекуперации энергии в органическом цикле Ренкина содержит корпус, имеющий входное отверстие для газообразного источника тепла и выходное отверстие для газообразного источника тепла и ограничивающий...
Тип: Изобретение
Номер охранного документа: 0002539699
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.2187

Компонент системы газификации

Изобретение относится к компонентам системы газификации и, более конкретно, к механизмам гашения потока в таких системах газификации. В одном варианте выполнения изобретения в компоненте системы газификации, таком как узел (14) интенсивного охлаждения или скруббер (19), может содержаться объем...
Тип: Изобретение
Номер охранного документа: 0002540031
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2261

Способ и устройство для планирования сканирования с использованием ультрафиолетового излучения

Изобретение предлагает способ определения местоположения одного или более образцов ткани по существу круглой формы, размещенных на твердом носителе. Способ включает этапы подачи света с заданной длиной волны на образец ткани, в котором этот свет вызывает автофлуоресценцию, идентификацию...
Тип: Изобретение
Номер охранного документа: 0002540254
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23b3

Система, содержащая газификатор, система, содержащая камеру охлаждения, и система, содержащая водоподающий насос

Изобретение относится к химической промышленности. Система газификации содержит газификатор (16), состоящий из реакционной камеры (62) и камеры охлаждения (64), скруббер (20), линию перекачки синтетического газа (86), проходящую от камеры охлаждения (64) к скрубберу (20), первого возвратного...
Тип: Изобретение
Номер охранного документа: 0002540592
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.251e

Двигатель, содержащий герметичный уплотнительный узел (варианты), и установка, содержащая двигатель

Изобретение относится к области электротехники и может быть использовано в двигателях, например, для нефтегазовой промышленности. Техническим результатом является уменьшение общих потерь в электрической машине. Установка (10) содержит двигатель (20) с ротором (30), статором (40), оболочкой...
Тип: Изобретение
Номер охранного документа: 0002540955
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.2f71

Система производства изотопов с разделенным экранированием

Изобретение относится к области ускорительной техники. Система производства изотопов содержит циклотрон с ярмом магнита, которое окружает ускорительную камеру. Циклотрон выполнен с возможностью направления пучка частиц из ускорительной камеры через ярмо магнита. Система производства изотопов...
Тип: Изобретение
Номер охранного документа: 0002543613
Дата охранного документа: 10.03.2015
27.03.2015
№216.013.35be

Узел обода колеса и способ сборки колеса

Изобретение относится к узлам обода колеса для внедорожных транспортных средств, используемых преимущественно для перевозки тяжелых грузов. Колесный узел содержит цилиндрическую ступицу, проходящую в осевом направлении от первой концевой части до второй концевой части вокруг внутреннего объема....
Тип: Изобретение
Номер охранного документа: 0002545242
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3a0e

Сверхзвуковой компрессор

Изобретение относится к компрессорам и системам, содержащим компрессоры. Cверхзвуковой компрессор содержит впуск для текучей среды, выпуск для текучей среды и по меньшей мере два ротора противоположного вращения. Указанные роторы выполнены последовательно таким образом, что выпуск из первого...
Тип: Изобретение
Номер охранного документа: 0002546350
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c34

Система и способ охлаждения с улавливанием углерода

Охлаждающая система включает систему улавливания углерода, систему охлаждения и устройство управления. Система улавливания углерода предназначена для удаления углеродсодержащего газа из синтез-газа с получением уловленного углеродсодержащего газа. Уловленный углеродсодержащий газ имеет чистоту...
Тип: Изобретение
Номер охранного документа: 0002546900
Дата охранного документа: 10.04.2015
+ добавить свой РИД