×
27.06.2014
216.012.d8fd

ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к медицине, а более конкретно к лекарственному препарату, используемому в качестве фотосенсибилизатора (ФС), и к способу фотодинамической терапии с его использованием. Препарат представляет собой наноструктурированную водную дисперсию метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида CHNO. Изобретение обеспечивает высокую фотоиндуцированную противоопухолевую активность в системе in vitro и in vivo, 100%-ное торможение роста опухоли и 90% излеченности животных за счет селективного накопления в опухоли и быстрого выведения из организма. 2 н. и 5 з.п. ф-лы, 5 ил., 8 пр.
Реферат Свернуть Развернуть

Настоящее изобретение относится к медицине, а более конкретно к лекарственному препарату на основе производного бактериопурпуринимида, используемого в качестве фотосенсибилизатора (ФС), и способу проведения фотодинамической терапии (ФДТ) с ним.

В настоящее время применяются в клинике или находятся на разных стадиях клинических испытаний ФС различных классов (порфирины и их металлокомплексы, хлорины, бензопорфирины, фталоцианины и др.), но особый интерес представляют природные хлорофиллы и их производные с интенсивным поглощением в ближней ИК-области спектра, поскольку их терапевтическое окно поглощения (750-850 нм) открывает новые возможности для диагностики и лечения злокачественных новообразований. Свет с подобной длиной волны проникает в ткани на глубину до 20-25 мм, это существенно расширяет возможности используемых в настоящее время методов лечения крупных, глубокозалегающих в неполых органах (молочная железа, простата) и плотно окрашенных (меланома) опухолей.

Известен ФС, представляющий собой наноструктурированную дисперсию на основе производного бактериохлорина p - метиловый эфир О-этилоксим N-этоксициклоимид бактериохлорина p C38H46N6O6, а также способ его получения и способ ФДТ, включающий системное введение известного ФС и облучение патологического участка оптическим излучением в спектральном диапазоне 790-810 нм через 0,7-5 часов после введения (RLJ 2411943). Вышеуказанный ФС и способ ФДТ являются ближайшими аналогами настоящего изобретения.

Наличие в структуре у известного ФС - метилового эфира O-этилоксима N-этоксициклоимида бактериохлорина p двух этильных групп придает молекуле определенную гидрофобность, которой, однако, недостаточно для реализации эффективного трансмембранного переноса в опухолевых клетках, что приводит к невысокой фотоиндуцированной противоопухолевой активности.

К недостаткам известного ФС-прототипа следует отнести низкую селективность накопления в опухоли (индекс селективности не превышает 2) и отсутствие результата полной излеченности животных.

Наличие вышеназванных недостатков известного ФС диктует поиск новых высокоэффективных ФС, у которых повышение гидрофобности достигается путем увеличения углеродной цепи боковых заместителей (пропокси-заместители) в макроциклическом кольце.

Заявляемая группа изобретений направлена на решение задачи создания ФС, препарата для ФДТ на основе бактериопурпуринимида, имеющего высокую фотоиндуцированную противоопухолевую активность и обеспечивающего эффективность ФДТ глубокозалегающих опухолей.

Использование заявляемого препарата для ФДТ позволяет достичь следующих технических результатов:

- повышение гидрофобности ФС за счет увеличения углеродной цепи периферических заместителей (пропокси-заместители) в макроциклическом кольце;

- обеспечение химической и фотостабильности препарата;

- высокая фотоиндуцированная активность по отношению к опухолевым клеткам человека различного генеза при отсутствии темновой токсичности;

- селективное накопление в опухоли и быстрое выведение из организма млекопитающих;

- повышение эффективности ФДТ глубокозалегающих опухолей.

Указанные технические результаты при осуществлении группы изобретений достигаются за счет того, что так же как известный ФС, препарат для ФДТ выполнен в форме наноструктурированной водной дисперсии на основе производного бактериопурпуринимида.

ФДТ осуществляют путем системного введения препарата, выполненного в форме наноструктурированной водной дисперсии на основе производного бактериопурпуринимида и воздействия на патологический участок оптическим излучением.

Особенность заявляемого препарата для ФДТ заключается в том, что в качестве ФС он содержит метиловый эфир O-пропилоксим-N-пропоксибактериопурпуринимида C40H50N6O6 со структурной формулой

Наноструктурированная водная дисперсия на основе метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида представляет собой:

- кремофорную наноэмульсию;

- твиновую наноэмульсию;

- хитозановую эмульсию;

- декстриновую эмульсию;

- мицеллярную дисперсию с поверхностно-активным веществом - блок-сополимером оксиэтилена и оксипропилена (Эмуксол 268).

Особенность заявляемого способа ФДТ заключается в том, что осуществляют системное введение наноструктурированной водной дисперсии на основе метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида в дозах от 1,0 до 10,0 мг/кг и облучение патологического участка оптическим излучением через 0,25-8 часов после введения препарата в спектральном диапазоне 789-831 нм при плотности энергии от 45 до 360 Дж/см2.

Сущность изобретения заключается в следующем:

Выбор природных пигментов для создания новых ФС обусловлен рядом факторов, в том числе их распространенностью в природе, интенсивностью поглощения в длинноволновой области спектра, структурной близостью к эндогенным порфиринам. Наличие указанных свойств позволяет предположить низкий уровень токсичности подобных соединений и их быстрое выведение из организма.

В качестве соединений, обладающих перечисленными выше свойствами, могут быть рассмотрены хлорины и бактериохлорины. Однако сами хлорины и бактериохлорины имеют ограниченное применение в качестве ФС из-за высокой гидрофобности, низкой химической и фотостабильности, умеренной селективности накопления в опухолевых клетках.

Несмотря на то что гидрофильные вещества удобны с точки зрения приготовления растворов для внутривенного введения, их способность проникать сквозь клеточные мембраны к жизненно важным мишеням клетки довольно ограничена. В то же время известно, что гидрофобные ФС обычно проникают внутрь опухоли и опухолевых клеток, а гидрофильные накапливаются в кровеносных сосудах и строме на периферии опухоли.

Следует отметить, что активность ФС с различной длиной алкильной боковой цепи зависит от количества углеродных атомов в ней. Известно, что максимальной активностью in vitro и in vivo обладают ФС с боковыми цепями из трех и шести атомов углерода [Boyle R., Dolphin D. Structure and biodistribution relationship of phothodynamic sensitizer. Photochem. Photobiol. 1996., v.64, p.469-485].

Это диктует необходимость создания устойчивых производных хлоринов и бактериохлоринов с улучшенными спектральными характеристиками, а также обладающих значительной тропностью к опухолям.

Синтезированный авторами ФС - метиловый эфир O-пропилоксим-N-пропоксибактериопурпуринимида обладает всеми перечисленными свойствами. Способ ФДТ с его использованием обеспечивает высокую фотоиндуцированную противоопухолевую активность и эффективность при воздействии на глубокозалегающие опухоли.

Предлагаемое изобретение иллюстрируется нижеследующими примерами.

Пример 1. Получение метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида

Субстанцию метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида получали одностадийной реакцией по нижеприведенной схеме.

К раствору 30 мг (0,05 ммоль) бактериопурпурина в 2 мл пиридина прибавляли 0,5 ммоль гидрохлорида пропоксиамина. Полученный раствор перемешивали в течение 20 часов при комнатной температуре. Ход реакции контролировали спектрофотометрически и при помощи ТСХ. Затем реакционную смесь разбавляли 150 мл воды и 5 мл 1N HCl и экстрагировали хлороформом до полного обесцвечивания хлороформного слоя (5×30 мл).

Хлороформные экстракты объединяли, сушили над безводным сульфатом натрия и упаривали на роторном испарителе. Полученный продукт очищали с помощью препаративной ТСХ на силикагеле в системе CHCl3:CH3OH (v/v 50:1).

Выход 80%. Спектр 1Н ЯМР (300 МГц, CDCl3, δ, м.д.): 1H ЯМР (CDCl3, δ, м.д.): 8.65 (Н, с, 5-Н), 8.58 (Н, с, 10-Н), 8.40 (Н, с, 20-Н), 5.21 (Н, м, 17-Н), 4.59 (4Н, м, -OCH2CH3), 4.18 (2Н, м, 7-Н, 18-Н), 4.00 (Н, м, 8-Н), 3.64 (3H, с, 12-CH3), 3.58 (3H, с, 173-COOCH3), 3.30 (3H, с, 2-CH3), 2.78 (3Н, с, 32-CH3), 2.75 (Н, м, 172-CH2), 2.40 (3H, м, 81-CH2, 171-CH2, 172-CH2), 2.08 (2Н, м, 81-CH2, 171-CH2), 1.80 (3H, д, J 7.24 Гц, 7-CH3), 1.70 (9Н, м, 18-CH3, -CCH2CH3), 1.10 (3H, т, J 7.38 Гц, 82-CH-3), 0.00 (с, NH), -0.26 (с, NH). UV-VIS, λmax, нм (ε×10-3, M-1 см-1): 368 (100), 418 (53), 541 (40), 800 (49). Масс-спектр (MALDI), m/z: 710,30 (M+-OC3H7), 592,20 (M+-OC3H7, -OC3H7).

Пример 2. Получение наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида с использованием Кремофора Е1.

Растворяли 5 мг метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида в 0,25 мл Кремофора EL. К полученному раствору добавляли 0,9% раствор хлористого натрия до концентрации 1 мг/мл при перемешивании при комнатной температуре. Полученный объем фильтровали через мембранный фильтр «Millipore» с размером пор 0.22 мкм.

Пример 3. Оценка стабильности наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида на основе Кремофора в бесклеточной среде.

Оценку стабильности в затемненных условиях проводили с помощью абсорбционного и флуоресцентного методов анализа. Растворы для проведения исследований готовили ex tempore, достигая выбранной концентрации путем последовательных разведений исходного раствора. Концентрация исходного раствора составляла 1 мг/мл. В качестве растворителя использовали среду Игла, содержащую 10% ЭТС и 0,9% раствор хлористого натрия. Спектры поглощения регистрировали на спектрофотометре «Genesys 2» (США) в диапазоне длин волн от 600 до 900 нм. Регистрацию флуоресценции растворов проводили в динамике контактным способом на лазерном спектральном анализаторе для флуоресцентной диагностики опухолей «ЛЭСА-6» (ТОО «БиоСпек», Россия). Флуоресценцию возбуждали He-Ne лазером при длине волны генерации 632,8 нм, спектральный диапазон от 600 до 950 нм.

Раствор метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида стабилен в течение суток инкубации в 0,9% растворе NaCl и среде Игла MEM с содержанием 10% эмбриональной телячьей сыворотки (ЭТС) при варьировании концентрацией от 15 до 35 мкМ в темновых условиях (Рис.1,2).

Пример 4. Оценка фотостабильности наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида на основе Кремофора в бесклеточной среде.

Оценку фотовыцветания проводили в среде Игла MEM, содержащей 10% ЭТС, при облучении полихроматическим светом. В качестве источника света использовали галогеновую лампу мощностью 500 Вт с широкополосным фильтром КС-19 (λmax≥20 нм) и водным фильтром толщиной 5 см. Световая доза составляла 1, 2, 5 и 10 Дж/см2 при плотности мощности 13,0-25,0 мВт/см2. Измерения флуоресценции проводили контактным способом на лазерном спектральном анализаторе «ЛЭСА-06» в спектральном диапазоне 650-950 нм. Спектры флуоресценции регистрировали сразу после приготовления раствора и через различные промежутки после начала облучения.

При облучении ФС не происходило сдвига максимума флуоресценции (λmax=799±2 нм), интенсивность флуоресценции снижалась незначительно без изменений в профиле спектра, что свидетельствовало о его стабильности при воздействии светом (Рис.3).

Оценку фотоиндуцированной активности наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида на основе Кремофора проводили:

- в системе in vitro на опухолевых клетках человека различного эпителиального происхождения: эпидермальной карциноме гортани (НЕр2), аденокарциноме легкого (А549), карциноме толстой кишки (НТ29) и мочевого пузыря (Т24);

- в системе in vivo на мышах с опухолями различного генеза: эпидермоидной карциноме легкого Льюис (LLC), саркоме 37 (S37) и лимфолейкозе Р388 (Р388).

Пример 5. Фотоиндуцированная активность наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида на основе Кремофора в отношении клеток карциномы толстой кишки (НТ29).

Оценку фотоиндуцированной активности проводили при варьировании концентрации ФС от 0,1 до 15,0 мкМ, времени инкубации до светового воздействия от 0,5 до 24 часов, с удалением и без удаления ФС перед облучением.

В качестве источника света использовали галогеновую лампу мощностью 500 Вт с широкополостным фильтром КС-19 (λmax≥720 нм) и водным фильтром толщиной 5 см. Уровень ингибирования роста клеток в культуре вычисляли по формуле:

ИР(%)=[(Пко)/Пк]×100%

где: ИР - ингибирование роста клеток культуры, в процентах;

По и Пк - число жизнеспособных клеток, выраженное в единицах оптической плотности соответственно в опытных (с ФС) и контрольных (без ФС) пробах.

Биологически значимым эффектом считали ингибирование роста культуры на 50% (ИК50).

Выявлено, что ФС проявил максимальную фотоиндуцированную активность относительно клеток культуры НТ29 при 6-часовой инкубации (ИК50 составляла 0,35±0,03 мкМ) с увеличением времени инкубации до 24 часов величина ИК50 не изменялась (Рис.4). Инкубация клеток с ФС в концентрациях до 15 мкМ в отсутствии светового воздействия в течение 24 часов не влияла на рост клеточной культуры.

Удаление ФС из культуральной среды перед воздействием светом незначительно снижало эффективность фотодинамического воздействия, что свидетельствует о том, что фотоиндуцированная активность реализуется преимущественно за счет активации внутриклеточного ФС.

Таким образом, результаты, полученные in vitro, показали, что метиловый эфир O-пропилоксим-N-пропоксибактериопурпуринимида эффективно накапливался в клетках и обладал высокой фотоиндуцированной активностью.

Пример 6. Распределение наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида на основе Кремофора в опухоли LLC и флуоресцентная контрастность относительно окружающей ткани.

Оценку распределения красителя в опухолевой и окружающей тканях проводили у мышей с карциномой LLC в интервале от 5 минут до 72 часов методом локальной флуоресцентной спектроскопии (ЛФС). Наноструктурированную кремофорную дисперсию O-пропилоксим-N-пропоксибактериопурпуринимида вводили внутривенно в дозе 5,0 мг/кг. Флуоресценцию регистрировали контактным способом на лазерном спектральном анализаторе для флуоресцентной диагностики опухолей и контроля за ФДТ «ЛЭСА-06».

В опухолевой ткани нормированная флуоресценция (НФ) ФС достигала максимального значения через 15 минут и сохранялась на высоком уровне до 8 часов после введения, а затем к 72 часам снижалась на 90%-98% от максимального значения. Наиболее высокие уровни ФН в нормальных коже и мышце наблюдались через 0,25-4 часа после введения ФС. Максимальная флуоресцентная контрастность относительно окружающих нормальных тканей кожи и мышцы регистрировалась в интервале от 0,25 до 8 часов после введения и составляла 2,2-2,8 усл.ед. и 1,6-2,2 усл. ед. соответственно.

Пример 7. Фотоиндуцированная противоопухолевая активность наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида на основе Кремофора у животных с опухолью LLC.

Исследование ФДТ с метиловым эфиром O-пропилоксим-N-пропоксибактериопурпуринимида в виде наноструктурированной водной дисперсии на основе Кремофора проводили у животных с карциномой легкого Льюис, привитой подкожно с внешней стороны правого бедра мышам BDF1, в зависимости от дозы ФС на 7 сутки после инокуляции опухоли.

В первой и второй опытных группах животным вводили ФС однократно внутривенно в хвостовую вену в дозах 2,5 и 5,0 мг/кг соответственно. Облучение проводили через 30 минут после введения ФС. Для облучения использовали светодиодный источник (ФГУП «ГНЦ РФ НИОПИК») с длиной волны 810±21 нм и плотностью мощности 100 мВт/см2 (плотность энергии 150 Дж/см2). Третья группа животных - контрольная без воздействия.

Эффективность ФДТ оценивали, используя общепринятые в экспериментальной онкологии критерии:

- торможение роста опухоли ТРО=[(Vк-Vоп)/Vk]·100%, где Vоп и Vк - объем опухоли в опытной и контрольной группах, соответственно;

- увеличение продолжительности жизни УПЖ=[(СПЖоп-СПЖк)/СПЖк]·100%, где СПЖоп и СПЖк - средняя продолжительность жизни в опытной и контрольной группах соответственно;

- критерий излеченности КИ=[Nи/No]·100%, где Nи и No - количество излеченных животных и общее количество животных в опытной группе соответственно.

Объем опухоли рассчитывали по формуле: V=d1·d2·d3, где d1, d2 и d3 - три взаимно перпендикулярных диаметра опухоли.

Измерение объема опухоли проводили в течение 20 суток после проведенного облучения с помощью электронного цифрового кронциркуля STORMtm 3C301 «Central». За животными наблюдали 120 суток.

В опытных группах в течение суток после облучения у животных образовывался интенсивный отек в зоне воздействия, который сохранялся до 4-5 суток. При использовании метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида в дозе 2,5 мг/кг среднее значение объема опухоли увеличивалось медленно по отношению к объему опухоли контрольной группы. ТРО составило 92,1-100%, УПЖ - 62,2%, КИ - 33,3%. Для дозы 5,0 мг/кг выявлена еще более высокая эффективность: 100% торможение роста опухоли в течение всего срока наблюдения, УПЖ - 111,1% и 50% излеченность животных (Рис.5).

Пример 8. Фармакокинетика наноструктурированной водной эмульсии метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида на основе Кремофора у интактных мышей.

Фармакокинетику метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида изучали методом ЛФС в органах и тканях интактных мышей в дозе 5,0 мг/кг.

Максимум спектра флуоресценции ФС в тканях животных регистрировали при 796±2 нм. Флуоресцирующая форма ФС быстро (в течение 15-30 минут) регистрировалась во внутренних органах и тканях организма, преимущественно в печени, затем снижалась с различной скоростью.

Во внутренних органах через 24 часа уровень НФ снижался в печени на 33%, почках - на 63%, селезенке - на 93% от максимального значения. Флуоресцирующая форма ФС в дозе 5,0 мг/кг определялась в почках и селезенке до 48 часов, а в печени остаточное количество определялось до 7 суток.

В коже максимальное значение флуоресценции регистрировалось через 15 минут после введения ФС, затем его НФ быстро снижалась и через 24 часа не определялась. Это свидетельствовало о быстром элиминировании ФС из кожи. В мышце через 24 часа уровень НФ также снижался на 83%, в жировой ткани - на 58%. Флуоресцирующая форма ФС определялась в мышце до 48 часов, а в жировой ткани - до 4 суток.

Полученные данные свидетельствуют о быстрой циркуляции метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида в организме млекопитающих и его выведении преимущественно через печень с желчью.

Таким образом, заявляемые препарат для ФДТ, представляющий собой наноструктурированную водную дисперсию на основе метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида, и способ ФДТ с использованием этого ФС обеспечивают: высокую фотоиндуцированную противоопухолевую активность, 100%-ное торможение роста опухоли и 90%-ную излеченность животных за счет селективного накопления в опухоли и быстрого выведения из организма.

Установлено, что использование наноструктурированной водной дисперсии на основе метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида при ФДТ приводит к существенному увеличению продолжительности жизни (от 65 до 120%) и излеченности животных (от 30 до 90%).

На Рис.1 представлены спектры флуоресценции ФС в среде Игла MEM, содержащей 10% ЭТС, в динамике (λmax=799 нм).

На Рис.2 представлены спектры флуоресценции ФС в 0,9% растворе хлористого натрия в динамике (λmax=789 нм).

На Рис.3 представлены спектры флуоресценции ФС в среде Игла MEM, содержащей 10% ЭТС, до и после облучения (λmax=799 нм).

На Рис.4 представлена зависимость фотоиндуцированной активности метилового эфира O-пропилоксим-N-пропоксибактериопурпуринимида от времени инкубации и удаления ФС из среды инкубации до воздействия.

На Рис.5. представлена зависимость фотоиндуцированной противоопухолевой активности O-пропилоксим-N-пропоксибактериопурпуринимида у мышей с опухолью LLC от дозы ФС.


ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 72.
10.01.2013
№216.012.1a0d

Способ оценки риска прогрессирования немелкоклеточного рака легкого после хирургического лечения

Изобретение относится к области медицины. Предложен способ оценки риска прогрессирования немелкоклеточного рака легкого (НМРЛ) у больных после хирургического лечения. Определяют количество IgG типа аутологичных антител к нативному секреторному муцину MUC1 (анти-sMUC1 AAT) в сыворотке крови у...
Тип: Изобретение
Номер охранного документа: 0002472161
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1c29

Способ получения β-карбида кремния

Изобретение может быть использовано в химической промышленности. Шунгит III-й разновидности, порошкообразное фенольное связующее и смазку смешивают. Полученную шихту вальцуют. Вальцованную массу измельчают, просеивают. Изготавливают заготовки методом компрессионного прессования. Заготовки...
Тип: Изобретение
Номер охранного документа: 0002472703
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1da5

Способ прогнозирования послеоперационных осложнений у больных с опухолевым поражением легкого

Изобретение относится к области медицины. Способ состоит в том, что за 7-10 дней до операции проводят иммунологический анализ образцов крови, определяют общее количество лейкоцитов и относительное количество лимфоцитов в периферической крови. Дальнейший выбор параметров дополнительного...
Тип: Изобретение
Номер охранного документа: 0002473083
Дата охранного документа: 20.01.2013
27.02.2013
№216.012.29c3

Фотосенсибилизаторы для фотодинамической терапии

Изобретение относится к четвертичным аммониевым солям мезо-тетра[1- (4'-бромбутил)-3-пиридил]бактериохлорина общей формулы где , . Эти соединения обладают высокой фотоиндуцированной активностью и могут применяться для фотодинамической терапии злокачественных новообразований в качестве...
Тип: Изобретение
Номер охранного документа: 0002476218
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.36d0

Фотосенсибилизатор для фотодинамической терапии

Описывается новый мезо-тетра[1-(4'-бромбутил)-3-пиридил]бактериохлорин тетрабромид формулы
Тип: Изобретение
Номер охранного документа: 0002479585
Дата охранного документа: 20.04.2013
10.05.2013
№216.012.3df4

Способы получения сложного гидросульфатфосфата цезия состава cs(hso)(hpo)

Изобретение относится к неорганической химии, в частности к синтезу гидросульфатфосфата цезия состава Cs(HSO)(HPO), который может быть использован в качестве твердого протонпроводящего материала. Монокристаллы Cs(HSO)(HPO) получают путем приготовления водного раствора с мольным соотношением...
Тип: Изобретение
Номер охранного документа: 0002481427
Дата охранного документа: 10.05.2013
27.07.2013
№216.012.5901

Фармацевтическая композиция для терапии острых токсических состояний

Изобретение относится к медицине и касается фармацевтической композиции для терапии острых токсических состояний. Композиция для терапии острых токсических состояний содержит белок - лактоферрин человека и дополнительно содержит нереплицирующиеся наночастицы со вставкой гена лактоферрина...
Тип: Изобретение
Номер охранного документа: 0002488406
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5bfb

Фармацевтическая композиция, продуцирующая антиоксидантный, антимикробный, антитоксический белок - лактоферрин человека, способ ее получения и способ терапии

Группа изобретений относится к области медицины, в частности токсикологии и радиологии, к лекарственным средствам на основе антиоксидантных белков и способам их применения. Фармацевтическая композиция для лечения токсических состояний, в которой лечебный эффект получают в результате воздействия...
Тип: Изобретение
Номер охранного документа: 0002489168
Дата охранного документа: 10.08.2013
10.10.2013
№216.012.71a9

Способ получения водных дисперсий наночастиц из смеси природных тритерпеноидов

Изобретение относится к биотехнологии, а именно к способу получения водных дисперсий наночастиц из смеси природных тритерпеноидов бересты. Способ включает в себя растворение смеси тритерпеноидов в органическом растворителе, введение раствора тритерпеноидов в контакт с водой или водным раствором...
Тип: Изобретение
Номер охранного документа: 0002494754
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.72e0

Способ получения экструзионной поливинилхлоридной композиции строительного назначения и композиция, полученная этим способом

Поливинилхлоридная композиция предназначена для изготовления профильно-погонажных строительных изделий, используемых для внешней отделки зданий, сооружений, преимущественно сайдинга. Способ получения экструзионной поливинилхлоридной композиции включает предварительное смешение в отдельной...
Тип: Изобретение
Номер охранного документа: 0002495065
Дата охранного документа: 10.10.2013
Показаны записи 1-10 из 88.
10.01.2013
№216.012.1a0d

Способ оценки риска прогрессирования немелкоклеточного рака легкого после хирургического лечения

Изобретение относится к области медицины. Предложен способ оценки риска прогрессирования немелкоклеточного рака легкого (НМРЛ) у больных после хирургического лечения. Определяют количество IgG типа аутологичных антител к нативному секреторному муцину MUC1 (анти-sMUC1 AAT) в сыворотке крови у...
Тип: Изобретение
Номер охранного документа: 0002472161
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1c29

Способ получения β-карбида кремния

Изобретение может быть использовано в химической промышленности. Шунгит III-й разновидности, порошкообразное фенольное связующее и смазку смешивают. Полученную шихту вальцуют. Вальцованную массу измельчают, просеивают. Изготавливают заготовки методом компрессионного прессования. Заготовки...
Тип: Изобретение
Номер охранного документа: 0002472703
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1da5

Способ прогнозирования послеоперационных осложнений у больных с опухолевым поражением легкого

Изобретение относится к области медицины. Способ состоит в том, что за 7-10 дней до операции проводят иммунологический анализ образцов крови, определяют общее количество лейкоцитов и относительное количество лимфоцитов в периферической крови. Дальнейший выбор параметров дополнительного...
Тип: Изобретение
Номер охранного документа: 0002473083
Дата охранного документа: 20.01.2013
27.02.2013
№216.012.29c3

Фотосенсибилизаторы для фотодинамической терапии

Изобретение относится к четвертичным аммониевым солям мезо-тетра[1- (4'-бромбутил)-3-пиридил]бактериохлорина общей формулы где , . Эти соединения обладают высокой фотоиндуцированной активностью и могут применяться для фотодинамической терапии злокачественных новообразований в качестве...
Тип: Изобретение
Номер охранного документа: 0002476218
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.36d0

Фотосенсибилизатор для фотодинамической терапии

Описывается новый мезо-тетра[1-(4'-бромбутил)-3-пиридил]бактериохлорин тетрабромид формулы
Тип: Изобретение
Номер охранного документа: 0002479585
Дата охранного документа: 20.04.2013
10.05.2013
№216.012.3df4

Способы получения сложного гидросульфатфосфата цезия состава cs(hso)(hpo)

Изобретение относится к неорганической химии, в частности к синтезу гидросульфатфосфата цезия состава Cs(HSO)(HPO), который может быть использован в качестве твердого протонпроводящего материала. Монокристаллы Cs(HSO)(HPO) получают путем приготовления водного раствора с мольным соотношением...
Тип: Изобретение
Номер охранного документа: 0002481427
Дата охранного документа: 10.05.2013
27.07.2013
№216.012.5901

Фармацевтическая композиция для терапии острых токсических состояний

Изобретение относится к медицине и касается фармацевтической композиции для терапии острых токсических состояний. Композиция для терапии острых токсических состояний содержит белок - лактоферрин человека и дополнительно содержит нереплицирующиеся наночастицы со вставкой гена лактоферрина...
Тип: Изобретение
Номер охранного документа: 0002488406
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5bfb

Фармацевтическая композиция, продуцирующая антиоксидантный, антимикробный, антитоксический белок - лактоферрин человека, способ ее получения и способ терапии

Группа изобретений относится к области медицины, в частности токсикологии и радиологии, к лекарственным средствам на основе антиоксидантных белков и способам их применения. Фармацевтическая композиция для лечения токсических состояний, в которой лечебный эффект получают в результате воздействия...
Тип: Изобретение
Номер охранного документа: 0002489168
Дата охранного документа: 10.08.2013
10.10.2013
№216.012.71a9

Способ получения водных дисперсий наночастиц из смеси природных тритерпеноидов

Изобретение относится к биотехнологии, а именно к способу получения водных дисперсий наночастиц из смеси природных тритерпеноидов бересты. Способ включает в себя растворение смеси тритерпеноидов в органическом растворителе, введение раствора тритерпеноидов в контакт с водой или водным раствором...
Тип: Изобретение
Номер охранного документа: 0002494754
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.72e0

Способ получения экструзионной поливинилхлоридной композиции строительного назначения и композиция, полученная этим способом

Поливинилхлоридная композиция предназначена для изготовления профильно-погонажных строительных изделий, используемых для внешней отделки зданий, сооружений, преимущественно сайдинга. Способ получения экструзионной поливинилхлоридной композиции включает предварительное смешение в отдельной...
Тип: Изобретение
Номер охранного документа: 0002495065
Дата охранного документа: 10.10.2013
+ добавить свой РИД