×
27.06.2014
216.012.d78a

Результат интеллектуальной деятельности: ЦИФРОВОЙ ИЗМЕРИТЕЛЬ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

Вид РИД

Изобретение

Аннотация: Предлагаемое изобретение относится к области измерительной техники, в частности к области измерения амплитудно-частотных характеристик. Цифровой измеритель амплитудно-частотных характеристик содержит индикатор, микроконтроллер, преобразователь аналог-код, выход которого соединен с первым входом микроконтроллера. Первый выход микроконтроллера соединен с индикатором. Также устройство содержит преобразователь код-аналог, устройство ввода и устройство сопряжения, первый вход которого является входом измерителя, а первый выход является выходом измерителя. Второй выход устройства сопряжения соединен с первым входом преобразователя аналог-код, второй вход которого соединен со вторым выходом микроконтроллера, второй вход которого соединен с устройством ввода, третий выход микроконтроллера соединен с третьим входом устройства сопряжения, четвертый выход микроконтроллера соединен с входом преобразователя код-аналог, выход которого соединен со вторым входом устройства сопряжения. Технический результат - расширение функциональных возможностей за счет обеспечения возможности измерения АЧХ. 5 ил.
Основные результаты: Цифровой измеритель амплитудно-частотных характеристик, содержащий индикатор, микроконтроллер, преобразователь аналог-код, выход которого соединен с первым входом микроконтроллера, первый выход микроконтроллера соединен с индикатором, отличающийся тем, что в него введен преобразователь код-аналог, устройство ввода и устройство сопряжения, первый вход которого является входом измерителя, а первый выход является выходом измерителя, второй выход устройства сопряжения соединен с первым входом преобразователя аналог-код, второй вход которого соединен со вторым выходом микроконтроллера, второй вход которого соединен с устройством ввода, третий выход микроконтроллера соединен с третьим входом устройства сопряжения, четвертый выход микроконтроллера соединен со входом преобразователя код-аналог, выход которого соединен со вторым входом устройства сопряжения.

Предлагаемое изобретение относится к области измерительной техники, в частности к средствам измерения амплитудно-частотных характеристик (АЧХ) четырехполюсника.

Известно устройство для автоматического измерения параметров амплитудно-частотной характеристики избирательного четырехполюсника, имеющего только один максимум или минимум в своей АЧХ [А.с. СССР №375588, МПК G01R 27/28, Опубл. 1973], содержащее генератор треугольного напряжения, генератор качающейся частоты, испытуемый четырехполюсник, детектор, пороговый формирователь импульсов, формирователь интервалов счета (ФИС), реверсивный счетчик и цифровой индикатор, обеспечивающий индикацию результатов измерений. Повышение точности в сравнении с прототипом достигается за счет компенсации методических и динамических погрешностей измерений за счет того, что полное время счета неизвестной частоты разделено на две части, одна из которых имеет временной сдвиг вверх, а другая - вниз по отношению к истинному значению частоты. Однако устройство не может правильно работать при условии нескольких максимумов в исследуемой АЧХ, а также отображать измеренную АЧХ на индикаторном устройстве.

Наиболее близким по технической сущности к заявленному устройству является выбранный в качестве прототипа цифровой измеритель модуляции [Пат. 2424534 РФ, МПК G01R 29/06, Опубл. 20.07.2011], содержащий индикатор, преобразователь аналог-код, входное устройство и микроконтроллер.

Структурная схема приведена на фиг.1. Цифровой измеритель содержит входное устройство 1, преобразователь 2 аналог-код, микроконтроллер 3 и индикатор 4. Причем выход входного устройства 1 соединен с первым входом преобразователя 2 аналог-код, выход которого соединен с первым входом микроконтроллера 3, первый выход микроконтроллера соединен с индикатором, второй выход соединен со вторым входом преобразователя 2 аналог-код, а третий выход - со вторым входом входного устройства 1.

Принцип работы измерителя основан на обработке дискретизированного массива данных при помощи преобразований Фурье и Гильберта.

Преобразование Гильберта позволяет найти для сигнала X(t) ортогональный ему сигнал X1(t). Используя эти сигналы, находится огибающая (мгновенная амплитуда) и мгновенная частота сигнала по формулам:

; .

За счет дополнительной обработки и фильтрации находятся следующие производные параметры:

- Глубина AM - пиковое и среднеквадратическое значение в заданной полосе частот.

- Девиация частоты - пиковое и среднеквадратическое значение в заданной полосе частот.

- Частота несущей (центральная частота).

- Частота модулирующего сигнала AM и (или) ЧМ.

- Коэффициент нелинейных искажений модулирующего сигнала AM и (или) ЧМ.

Устройство не имеет схемы генерации сигналов и, следовательно, не может быть использовано для измерения амплитудно-частотных характеристик.

Задачей предлагаемого изобретения является расширение функциональных возможностей устройства, а именно обеспечение возможности измерения амплитудно-частотных характеристик (АЧХ) четырехполюсника, таких как: нижняя частота на заданном уровне -fн, верхняя частота на заданном уровне -fв, полоса частот на заданном уровне fв-fн, центральная частота на заданном уровне fц=(fв-fн)/2, неравномерность АЧХ в заданной полосе частот - α.

Поставленная задача достигается тем, что в цифровой измеритель модуляции, содержащий индикатор, микроконтроллер, преобразователь аналог-код, выход которого соединен с первым входом микроконтроллера, первый выход микроконтроллера соединен с индикатором, введен преобразователь код-аналог, устройство ввода и устройство сопряжения, первый вход которого является входом измерителя, а первый выход является выходом измерителя, второй выход устройства сопряжения соединен с первым входом преобразователя аналог-код, второй вход которого соединен со вторым выходом микроконтроллера, второй вход которого соединен с устройством ввода, третий выход микроконтроллера соединен с третьим входом устройства сопряжения, четвертый выход микроконтроллера соединен со входом преобразователя цифра-аналог, выход которого соединен со вторым входом устройства сопряжения.

Структурная схема цифрового измерителя АЧХ приведена на фиг.2. На схеме обозначены: устройство сопряжения 1, преобразователь 2 аналог-код, микроконтроллер 3, индикатор 4, преобразователь код-аналог 5, устройство ввода 6. Причем первый вход устройства сопряжения 1 является входом измерителя, а первый выход является выходом измерителя, второй выход устройства сопряжения 1 соединен с первым входом преобразователя 2 аналог-код, второй вход которого соединен со вторым выходом микроконтроллера 3, второй вход которого соединен с устройством ввода 6, третий выход микроконтроллера 3 соединен с третьим входом устройства сопряжения 1, четвертый выход микроконтроллера 3 соединен со входом преобразователя цифра-аналог 5, выход которого соединен со вторым входом устройства сопряжения 1, выход преобразователя 2 аналог-код соединен с первым входом микроконтроллера 3, первый выход микроконтроллера 3 соединен с индикатором 4.

Устройство работает следующим образом.

Сигнал с исследуемого устройства или линии связи поступает на устройство сопряжения 1, представляющее собой согласованный усилитель-аттенюатор с регулируемым коэффициентом передачи как для приемного, так и для передающего трактов. Затем сигнал поступает на преобразователь 2 аналог-код (аналого-цифровой преобразователь - АЦП), работающий в режиме стробирования. В зависимости от уровня сигнала, оцифрованного преобразователем 2 аналог-код, микроконтроллер 3 задает такой коэффициент передачи приемного тракта устройства сопряжения 1, чтобы максимальное значение кода АЦП лежало в пределах от 0.5 до 0.9 предела шкалы. В зависимости от режима работы, выбранного через устройства ввода 6, и отображающегося на индикаторе 4, микроконтроллер 3 задает частоту дискретизации f для преобразователей аналог-код 2 и код-аналог 5 таким образом, чтобы спектр генерируемого и получаемого сигнала был расположен в диапазоне частот от 0 до f/2. Массив оцифрованных данных X[iT] с выхода преобразователя 2 аналог-код поступает на микроконтроллер 3, который реализует представленный ниже алгоритм работы.

В зависимости от выбранного режима работы устройство отображает на индикаторе 4 либо АЧХ измеренного тракта с вычисленными параметрами АЧХ, либо параметры модулированного сигнала.

Принцип работы измерителя основан на расширенной обработке дискретизированного массива данных при помощи преобразований Фурье и Гильберта.

В микроконтроллере реализуется следующий алгоритм работы:

Если выбран режим работы «Цифровой измеритель модуляции», алгоритм работы полностью повторяет алгоритм работы устройства из прототипа.

Если выбран режим работы «Цифровой измеритель АЧХ», то реализуется модифицированный алгоритм работы, который использует цифровой метод компенсации динамических погрешностей измерений за счет того, что полное время счета неизвестной частоты разделено на две части, одна из которых имеет временной сдвиг вверх, а другая - вниз по отношению к истинному значению частоты, созданный на основе метода аналога.

Алгоритм работы:

1. Выбираем частоту дискретизации fs. Согласно т. Котельникова fs должны быть более чем в два раза больше, чем верхняя частота в спектре анализируемого сигнала. Дополнительно необходимо учесть расширение спектра из-за необходимости использования частотной модуляции (ЧМ) испытательного сигнала, минимальное расширение происходит при использовании гармонической частотной модуляции (ГЧМ). В устройстве сопряжения применяется фильтр, для подавления компонент частоты fs/2, однако уровень подавления этих составляющих может быть невысок, например 12 дБ на октаву. Т.о. для использования одной частоты дискретизации для ЦАП и АЦП частоту дискретизации целесообразно выбрать в 4 раза больше, чем верхняя частота в спектре испытательного ЧМ сигнала, тем самым можно ослабить требования к фильтру в устройстве сопряжения. Согласно т.Котелникова частота дискретизации должна быть более чем в 2 раза выше верхней частоты спектра генерируемого сигнала.

2. Генерируем испытательный ГЧМ сигнал с частотой дискретизации fs, содержащий 1 период модуляции, т.е. изменения частоты от fmin до fmax, от fmax до fmin. В памяти микроконтроллера сохраняем массив значений utst[iT], где i∈[0, N-1] - номер элемента в массиве utst[iT], состоящий из N точек.

Где Umax - амплитуда генерируемого ЦАП сигнала в дискретах, например, 5123,

Δf - максимальное отклонение частоты относительно среднего значения Δf=(fmax-fmin)/2,

fmax и fmin - задаваемые пользователем значения диапазона частот,

fmod=fs/N - частота модуляции,

- центральная частота.

Такой выбор частоты сигнала позволяет задать ровно один период тестового сигнала в массиве.

3. Подаем на вход преобразователя код-аналог массив значений utst[i].

4. Дискретизируем выходной сигнал испытуемого модуля с частотой fs и получаем массив u[i], где i∈[0,N-1] - номер элемента в массиве u[i].

5. Находим максимальное значение из массива AMAX=MAX(u[i]).

Если Р1max/МАХАЦП2, то коэффициент передачи входного устройства не изменяем. Здесь: P1 и Р2 - максимальный и минимальный коэффициенты использования динамического диапазона АЦП (можно выбрать Р1=0.9, P2=0.5); МАХАЦП - предел шкалы АЦП. При необходимости изменения коэффициента передачи повторяем 4-й и 5-й шаги алгоритма. Правильный выбор коэффициента передачи обеспечит более полное использование рабочего диапазона АЦП, что будет способствовать высокой точности оцифровки.

6. Находим прямое быстрое преобразование Фурье (БПФ) от массива u[i], получаем массив спектральных составляющих S[i]=FFT(u[i]). Для фильтрации паразитной постоянной составляющей, возникающей в процессе получения дискретизированного массива данных, обнуляем амплитуду 0-й спектральной составляющей и получаем массив S*[i]. Затем, используя обратное преобразование Фурье (ОБПФ), получаем отфильтрованный массив u*[i].

7. Находим преобразование Гильберта от массива u[iT] через БПФ (FFT) и ОБПФ (RFT):

u[i]=H(u*[i])=RFT(k·S[i]), где S[i)=k·S*[i]

k=-j, если i=0, 1, 2, 3, …N/2; k=j, если i=N/2+1, N/2+2, N/2+3, …N-1.

8. Находим огибающую АЧХ по формуле: .

9. Обнуляем ВЧ спектральные составляющие огибающей АЧХ. Для этого вычисляем прямое преобразование Фурье от массива A[i] (Пример массива A[i] приведен на Фиг.3). В полученном массиве спектральных составляющих SA[i] обнуляем составляющие от Q до N-Q, где Q - параметр, задаваемый пользователем, например 64. Параметр Q по сути задает максимальное количество периодов (максимумов и минимумов) АЧХ после фильтрации. Чем меньше этот параметр, тем сильнее фильтруется АЧХ, но тем более пологой будет АЧХ, т.е. максимальная крутизна определяется этим параметром. Реальное значение Q может варьироваться в диапазоне от 16 до N/2, при N/2 фильтрация полностью отключается. Затем вычисляем обратное преобразование Фурье, результаты которого записываем в массив А*[i]. Данная операция позволит устранить изрезанность амплитудно-частотной характеристики, вызванной шумами. Пример массива А*[i] приведен на Фиг.4.

10. С целью нахождения мгновенной частоты вычисляем производную от массивов u*, u, используя прямое и обратное преобразование Фурье:

(u[i])=RFT(k·S*[i]); (u[i]=RFT(k·S[i]).

Здесь k=jωi, если i=0, 1, 2, 3, …N/2; k=-jω(N-i), если i=N/2+1, N/2+2,N-1.

11. Получаем массив мгновенных значений частот F[iT)]:

.

12. Находим преобразование Фурье от массива F[i], получаем массив SF[i]=FFT(F[i]). Отфильтровываем массив SF[i], обнуляя компоненты с индексами i=3, 4, …N-3, получаем массив . Находим обратное преобразование Фурье от массива , получаем отфильтрованный массив F*[i].

13. Соединяем массивы мгновенных значений F*[i] и А*[i] в единый массив значений FA[i].F, FA[i].A. Так же, для каждого элемента массива добавляем бинарный параметр I, принимающий значения «истина»/«ложь» (1 и 0, соответственно). Значение «истина» означает, что точка принадлежит возрастающему участку амплитуды, значение «ложь» означает, что точка принадлежит убывающему участку амплитуды. При объединении параметр I=0. Таким образом, массив FA представляет собой таблицу записей, состоящую из трех полей:

- Амплитуда, А.

- Частота, F.

- Параметр возрастания, I.

14. Разделяем массив FA[i] на два массива, в одном из которых при увеличении индекса частота возрастает - FА[i], в другом соответственно убывает FА[i]. Для этого выполняем шаги 14.1.-14.4.

14.1. Устанавливаем значение индексов массивов i=0, j=0, k=0.

14.2. Если FA[(i+1)]. F>FA[i]. F>0, заносим точку FA[i] в массив FA[j] (см. Фиг.5, штрихпунктирная линяя) и увеличиваем значение j на 1, иначе заносим эту точку в массив FА[k] (см. Фиг.5, пунктирная линяя) и увеличиваем значение k на 1.

14.3. Увеличиваем значение i на 1.

14.4. Если i<N-1, переходим к пункту 14.2.

15. Вычисляем для массивов FА, FА параметр возрастания - I.

16. Устанавливаем индекс массива i=0.

17. Вычисляем разницу значений амплитуд как dA=FA[i+1]- FА[i]

18. Если dA>0, то для точки FА[i+1] устанавливаем признак возрастания I=1. Если i=0, то эту же операцию производим с точкой FA[0], причем признак I для этой точки определяем как I для точки с индексом 1.

19. Увеличиваем значение индекса массива на 1. Если i<N, переходим к пункту 18.

20. Повторяем пункты алгоритма 16-19 для массива FА.

21. Устанавливаем индекс массива i=0. Значение признака предыдущей точки UAprev устанавливаем равным 0. Значение границы сортировки Bord=0.

22. Устанавливаем t равным Bord, ΔА равным максимально возможному значению амплитуды А.

23. Сравниваем точку FА[i] с точкой FА[t] по амплитуде. Вычисляем разницу значений и, если она меньше ΔА, то ΔА присваиваем ее значение, а также рассчитываем среднее значение амплитуды

mA=(FA[i]. A+FA[t].A)/2

24. Увеличиваем t на единицу.

25. Если для точки FA,[t] IA=IAprev, переходим к пункту 24. Иначе, записываем в массив FAsort[i].A значение амплитуды mA - FAsort[i].A=mА, рассчитываем среднее значение частоты

mF==(FA[i].F+FA[t].F)/2

и так же записываем значение в массив FAsort[i].F=mF. Увеличиваем i на единицу и переходим к пункту 27.

26. Если для точки массива FA''[i] IA≠IAprev, присваиваем значение границы сортировки Bord=i. Если i=N, переходим к пункту 28, иначе повторяем действия с пункта 23.

27. Если не выбран режим относительных измерений, то отображаем полученную зависимость FAsort[i] (см. Фиг.5, сплошная линяя) на индикаторном устройстве.

28. Рассчитываем и отображаем неравномерность - α в диапазоне частот от fmin до fmax, задаваемых пользователем. α=201g (Amax/Amin), где Аmax и Amin - максимальное и минимальное значения в массиве FAsort[i], лежащего между частотами fmin и fmax.

29. Вычисляем максимальное значение амплитуды А* в массиве FAsort[i].

30. Нормируем массив FAsort[i] по максимальной амплитуде FA*sort[i].A=20lg(FAsort[i].A/А*). Если выбран режим относительных измерений, то отображаем полученную зависимость на индикаторном устройстве.

31. Определяем нижнюю -fн и верхнюю -fв частоту на заданном пользователем уровне L [дБ], для этого в массиве находим ближайшие к L значения амплитуды . Определяем, какое из найденных значений массива больше по частоте, записываем частоту для этого индекса в переменную , меньшее значение по частоте записываем в переменную fн.

32. Рассчитываем полосу частот на заданном уровне fв-fн и центральную частоту на заданном уровне Fц=(fв-fн)/2.

33. Отображаем найденные значения параметров АЧХ: α, fв-fн, fв, fн, fц.

34. Если для анализа необходимо изменение диапазона частот для анализа, то переходим к пункту 2 алгоритма, иначе переходим к пункту 3.

Пункты алгоритма 13-26 реализуют компенсацию динамических погрешностей измерений за счет того, что измерение АЧХ разделено на две части, одно из которых происходит при возрастании частоты, а другое при убывании.

Наибольший эффект от использования предложенного изобретения может быть достигнут в измерительных комплексах, содержащих быстродействующий микроконтроллер/сигнальный процессор. Расширение функциональных возможностей достигнуто за счет усложнения алгоритма цифровой обработки и введения схемы генерации тестового сигнала для измерения АЧХ.

Предложенный цифровой измеритель АЧХ может измерять:

- АЧХ устройства.

- АЧХ линии или канала связи, при этом необходимо 2 измерителя на каждом конце линии или канала связи.

- Параметры АЧХ: нижнюю -fн и верхнюю -fв частоту на заданном уровне, полосу частот на заданном уровне fв-fн, центральную частоту на заданном уровне fц=(fв-fн)/2, неравномерность АЧХ в заданной полосе частот - α.

- Глубину AM - пиковое значение в заданной полосе частот.

- Девиацию частоты - пиковое значение в заданной полосе частот.

- Глубину AM - среднеквадратическое значение в заданной полосе частот.

- Девиацию частоты - среднеквадратическое значение в заданной полосе частот.

- Частоту несущей (центральную частоту).

- Частоту модулирующего сигнала AM и (или) ЧМ.

- Коэффициент нелинейных искажений модулирующего сигнала AM и (или) ЧМ.

Использование в цифровом измерителе АЧХ недорогой цифровой схемотехнической базы приводит к снижению стоимости и повышению надежности устройства.

Цифровой измеритель амплитудно-частотных характеристик, содержащий индикатор, микроконтроллер, преобразователь аналог-код, выход которого соединен с первым входом микроконтроллера, первый выход микроконтроллера соединен с индикатором, отличающийся тем, что в него введен преобразователь код-аналог, устройство ввода и устройство сопряжения, первый вход которого является входом измерителя, а первый выход является выходом измерителя, второй выход устройства сопряжения соединен с первым входом преобразователя аналог-код, второй вход которого соединен со вторым выходом микроконтроллера, второй вход которого соединен с устройством ввода, третий выход микроконтроллера соединен с третьим входом устройства сопряжения, четвертый выход микроконтроллера соединен со входом преобразователя код-аналог, выход которого соединен со вторым входом устройства сопряжения.
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК
Источник поступления информации: Роспатент

Показаны записи 61-70 из 75.
13.01.2017
№217.015.871c

Замок с тепловым расцеплением

Изобретение относится к автоматическим средствам пожаротушения и может быть использовано для тушения пожаров. Задачей изобретения является упрощение конструкции, расширение функциональных возможностей и повышение эксплуатационных характеристик. Перед началом эксплуатации вал 6 устанавливают...
Тип: Изобретение
Номер охранного документа: 0002603578
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9a29

Способ временной синхронизации системы связи на основе ортогонального частотного разделения каналов с мультиплексированием по преамбуле

Изобретение относится к области радиотехники, в частности к способу временной синхронизации системы связи. Технический результат - повышение точности за счет резкого сужения области максимума решающей функции. Указанный технический результат достигается в том числе и за счет того, что решающая...
Тип: Изобретение
Номер охранного документа: 0002609774
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.9ea4

Способ шлифования

Изобретение относится к области абразивной обработки и может быть использовано в машиностроении, приборостроении для предварительного и окончательного шлифования деталей из различных материалов. При шлифовании используют инструмент с двумя шлифовальными кругами - крупнозернистым и...
Тип: Изобретение
Номер охранного документа: 0002606143
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a73c

Способ регулирования движения транспортных средств на перекрестке транспортных магистралей

Изобретение относится к области управления дорожным движением, а именно к способам регулирования движения транспортных средств на перекрестке транспортных магистралей, расположенных на одном уровне. Способ заключается в пофазном управлении движением транспортных потоков с помощью...
Тип: Изобретение
Номер охранного документа: 0002608123
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.bbad

Способ гибкого ленточного шлифования

Изобретение относится к области абразивной обработки и может быть использовано при ленточном шлифовании сложных пространственных поверхностей, например формообразующих поверхностей штампов, пресс-форм, форм для литья под давлением и др. На ведущий и ведомый ролики надевают нерабочей внутренней...
Тип: Изобретение
Номер охранного документа: 0002615964
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bbce

Комбинированный виброустойчивый инструмент

Инструмент выполнен в виде двух режущих модулей, между которыми расположен демпфер колебаний. Режущие модули осуществляют параллельную обработку различных поверхностей одной заготовки. Нижний модуль верхним своим торцом образует осевой зазор с торцом крышки демпфера колебаний, величина которого...
Тип: Изобретение
Номер охранного документа: 0002615965
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bcbc

Способ диагностики сверточных кодов

Изобретение относится к технике связи и может быть использовано для определения неизвестной структуры сверточного кодера со скоростью кодирования, равной , и кодовым ограничением, равным K, на основе анализа принимаемой кодовой последовательности. Технический результат – определение структуры...
Тип: Изобретение
Номер охранного документа: 0002616180
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bd97

Легкий бетон на основе отходов минерального сырья

Изобретение относится к строительным материалам и может быть использовано в промышленном и гражданском строительстве при изготовлении бетонов. Легкий бетон с использованием необожженных доломитовых отходов и щебня пеностекла, полученный при следующем соотношении компонентов, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002616307
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.c33f

Захватный корректирующий модуль

Изобретение относится к области машиностроения, роботостроения и может использоваться для коррекции положения преимущественно плоских изделий при их захвате из стандартной тары. Наиболее эффективно применение устройства с использованием вакуумных и электромагнитных захватов. Захватный...
Тип: Изобретение
Номер охранного документа: 0002618019
Дата охранного документа: 02.05.2017
26.08.2017
№217.015.d557

Способ работы мембранного привода с жесткими центрами

Изобретение относится к области машиностроения, гидравлическим и пневматическим приводам, работающим от воздействия газа или жидкости. Наиболее эффективно применение способа для работы двухмембранного привода. Задачей изобретения является расширение функциональных возможностей мембранных...
Тип: Изобретение
Номер охранного документа: 0002623080
Дата охранного документа: 21.06.2017
Показаны записи 61-70 из 77.
13.01.2017
№217.015.847f

Устройство для вычисления функциональных зависимостей

Изобретение относится к вычислительной технике и может быть использовано в специализированных устройствах обработки информации. Техническим результатом является повышение быстродействия при фиксированных точностных характеристиках и программно-аппаратурных затратах. Устройство содержит блок...
Тип: Изобретение
Номер охранного документа: 0002602989
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.850a

Магнезиальное вяжущее на основе отходов доломитового и пеностекольного производства

Изобретение относится к строительной индустрии, а именно к получению модифицированного экономически выгодного вяжущего вещества на основе отходов доломитового производства. Технический результат заключается в повышении механической прочности, адгезионной прочности, стойкости к...
Тип: Изобретение
Номер охранного документа: 0002603112
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.860c

Способ получения покрытия из микроструктурированного карбида титана на поверхности изделия из титана или титанового сплава с использованием лазерного излучения

Изобретение относится к формированию износостойких покрытий из карбида титана на поверхности изделий из титана или его сплавов и может быть использовано для формирования покрытий на деталях и инструментах, работающих в условиях интенсивного износа, агрессивных сред и высоких температур. Способ...
Тип: Изобретение
Номер охранного документа: 0002603751
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8622

Способ работы захвата манипулятора и устройство для его осуществления

Изобретение относится к области машиностроения, в частности к захватным устройствам, и может быть использовано для обезвреживания мин. Манипулятор для захвата предметов содержит корпус, на котором закреплен силовой цилиндр со штоком, и захват. Захват выполнен в виде анкера, состоящего из...
Тип: Изобретение
Номер охранного документа: 0002603741
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86d7

Тяжелый бетон с использованием доломитовых отходов

Изобретение относится к строительной индустрии, а именно к получению модифицированного экономически выгодного тяжелого бетона на основе отходов доломитового производства. Технический результат заключается в повышении прочности и утилизации отходов минерального сырья. Тяжелый бетон содержит,...
Тип: Изобретение
Номер охранного документа: 0002603316
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.871c

Замок с тепловым расцеплением

Изобретение относится к автоматическим средствам пожаротушения и может быть использовано для тушения пожаров. Задачей изобретения является упрощение конструкции, расширение функциональных возможностей и повышение эксплуатационных характеристик. Перед началом эксплуатации вал 6 устанавливают...
Тип: Изобретение
Номер охранного документа: 0002603578
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9a29

Способ временной синхронизации системы связи на основе ортогонального частотного разделения каналов с мультиплексированием по преамбуле

Изобретение относится к области радиотехники, в частности к способу временной синхронизации системы связи. Технический результат - повышение точности за счет резкого сужения области максимума решающей функции. Указанный технический результат достигается в том числе и за счет того, что решающая...
Тип: Изобретение
Номер охранного документа: 0002609774
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.9ea4

Способ шлифования

Изобретение относится к области абразивной обработки и может быть использовано в машиностроении, приборостроении для предварительного и окончательного шлифования деталей из различных материалов. При шлифовании используют инструмент с двумя шлифовальными кругами - крупнозернистым и...
Тип: Изобретение
Номер охранного документа: 0002606143
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a73c

Способ регулирования движения транспортных средств на перекрестке транспортных магистралей

Изобретение относится к области управления дорожным движением, а именно к способам регулирования движения транспортных средств на перекрестке транспортных магистралей, расположенных на одном уровне. Способ заключается в пофазном управлении движением транспортных потоков с помощью...
Тип: Изобретение
Номер охранного документа: 0002608123
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.bbad

Способ гибкого ленточного шлифования

Изобретение относится к области абразивной обработки и может быть использовано при ленточном шлифовании сложных пространственных поверхностей, например формообразующих поверхностей штампов, пресс-форм, форм для литья под давлением и др. На ведущий и ведомый ролики надевают нерабочей внутренней...
Тип: Изобретение
Номер охранного документа: 0002615964
Дата охранного документа: 11.04.2017
+ добавить свой РИД