×
20.06.2014
216.012.d447

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИ АКТИВНОЙ СТЕКЛОКЕРАМИКИ НА ОСНОВЕ ФТОРИДНЫХ СТЕКОЛ, ДОПИРОВАННЫХ СОЕДИНЕНИЯМИ РЗЭ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения оптически активной стеклокерамики на основе фторидных стекол и может быть использовано на предприятиях стекольной и оптической промышленности для получения материалов, проводящих лазерное излучение. Способ включает введение нанопорошка фторида редкоземельного элемента (РЗЭ) в шихту: порошок фторидного стекла, механическое перемешивание порошка фторидного стекла и нанопорошка фторида РЗЭ с одновременным помолом фторидного стекла до размеров частиц 0,1-0,5 мкм и прессование. Шихту помещают в форму для прессования, прикладывают необходимое давление и нагревают до температуры стеклования, не снижая давления. Технический результат - придание новых свойств фторидным стеклам путем их активизации с помощью фторидов РЗЭ. 3 пр.
Основные результаты: Способ изготовления оптически активной стеклокерамики на основе фторидных стекол, содержащих фториды редкоземельных элементов, включающий приготовление порошка фторидного стекла с фторидами редкоземельных элементов, помещение приготовленного порошка в форму для прессования, нагрев до температуры, обеспечивающей стеклование, прессование и охлаждение, отличающийся тем, что приготовление порошка фторидного стекла с фторидами редкоземельных элементов осуществляют путем введения последних в виде нанопорошка с размерами частиц не более 50 нм в порошок фторидного стекла с его одновременным помолом до размеров частиц 0,1-0,5 мкм и при механическом перемешивании, при этом прессование осуществляют, прикладывая давление к форме, содержащей порошок в холодном виде, а затем осуществляют нагрев, не снижая приложенного давления.

Изобретение относится к области получения оптически активной стеклокерамики на основе фторидных стекол и может быть использовано на предприятиях стекольной и оптической промышленности для получения материалов, проводящих лазерное излучение.

Одной из актуальных задач современного материаловедения является поиск подходящих сред для передачи лазерного излучения, которое в настоящее время широко используется как основной инструмент в различных областях промышленности и в медицинских целях. С практической точки зрения решающими критериями являются характеристики излучения и стоимость производства лазеров. Большинство современных твердотельных лазеров основано на допированных редкоземельными элементами (РЗЭ), точнее, соединениями РЗЭ, кристаллах YAG (Y3Al5O12), тогда как среди мощных газовых лазеров наиболее распространены CO2 лазеры. Это связано с их применением в лазерной хирургии, так как максимум поглощения человеческих тканей приходится на длину волны 10.6 µm. При передаче лазерного излучения (Nd:YAG, λ=2.94 µm; CO2, λ=4.8-5.5 µm) по кварцевым волокнам большая часть мощности теряется в виде тепла. Поэтому весьма актуален поиск новых проводящих сред. В этом отношении весьма перспективны фторидные стекла вследствие их прозрачности в широком диапазоне спектра 0.3-10 µm. В отличие от оксидных стекол, фторидные, имеющие в своем составе тяжелые, обладающие большим радиусом, лекгополяризуемые катионы, характеризуются низкой энергией фононов и, соответственно, расширенной областью пропускания.

Активную стеклокерамику получают различными методами, в частности кристаллизацией стекла при температурах, близких к температурам стеклования, прессованием порошков фторидов металлов при высоких температурах [П.П. Федоров, В.В. Осико, Т.Т. Басиев, Ю.В. Орловский, К.В. Дукельский, И.А. Миронов, В.А. Демиденко, А.Н. Смирнов. Оптическая фторидная нанокерамика // Российские нанотехнологии, т.2, №5-6, 2007, С.95-105].

Сегодня при получении активной нанокерамики на основе фторидных стекол соединения РЗЭ вводят в исходную шихту, нагревают полученную смесь до температур 900-1000°С и при этих температурах варят стекло в течение 15-30 минут. Для устранения свилей (стекловидных включений, отличающихся своими свойствами от основной стекломассы) полученное таким образом стекло измельчают и прессуют при температурах стеклования. В результате получается стеклокерамика с равномерно распределенными РЗЭ в стеклянной матрице [P.A. Tick, N.F. Borelli, I.M. Reaney Opt. Mater. (Amsterdam), 15, 81 (2000)]. Однако соединения РЗЭ в полученной известным способом стеклокерамике распределены равномерно на молекулярном уровне (в виде отдельных молекул) и не образуют кристаллов, необходимых для ее активизации. Для того чтобы перевести их в нанокристаллическое состояние, необходима направленная кристаллизация стекла. Этот процесс, требующий строгого контроля теплового режима и скорости роста кристаллов, крайне сложен в связи с неравномерностью этого роста и не обеспечивает стабильных результатов: нанокристаллическое состояние РЗЭ в матрице стекла достигается лишь в единичных случаях.

Наиболее близким к заявляемому техническому решению является способ, описанный в патенте США №4388097, опубл. 14.01.1983, «Фторидные стекла, полученные горячим прессованием», который включает предварительное (за рамками способа) получение фторидных стекол на основе ZrF4-BaF2 и HfF4-BaF2, включающих фториды РЗЭ (от CeF3 до LuF3), приготовление образца, преимущественно литого цельного фторидного стекла (возможно, осколков или порошка), содержащего фторид РЗЭ, помещение его в форму для прессования, нагрев до температуры, обеспечивающей стеклование, которая находится в интервале между точкой размягчения стекла и точкой его кристаллизации, и горячее прессование при достигнутой температуре с последующим охлаждением до комнатной температуры. Полученные фторидные стекла, обладающие прозрачностью в средней области ИК спектра, обнаруживают высокое качество и не нуждаются в дополнительной обработке.

Однако в известных стеклах фториды РЗЭ распределены на молекулярном уровне, кристаллическая фаза, обеспечивающая активизацию стекла, отсутствует и эти стекла не обнаруживают оптической активности

Задача изобретения заключается в разработке эффективного способа получения оптически активной стеклокерамики с нанокристаллами фторидов РЗЭ, внедренными в матрицу из фторидного стекла.

Технический результат изобретения заключается в придании новых свойств фторидным стеклам путем их активизации с помощью фторидов РЗЭ.

Указанный технический результат достигается способом изготовления оптически активной стеклокерамики на основе фторидных стекол, содержащих фториды редкоземельных элементов, включающим приготовление порошка фторидного стекла с фторидами редкоземельных элементов, помещение его в форму для прессования, нагрев до температуры, обеспечивающей стеклование, прессование и охлаждение, в котором, в отличие от известного, приготовление порошка фторидного стекла с фторидами редкоземельных элементов осуществляют путем введения последних в виде нанопорошка с размерами частиц не более 50 нм в порошок фторидного стекла с его одновременным помолом до размеров частиц 0,1-0,5 мкм при механическом перемешивании, при этом прессование осуществляют, прикладывая давление к форме, содержащей порошок в холодном виде, а затем осуществляют нагрев, не снижая приложенного давления.

Способ осуществляют следующим образом.

Готовят навеску шихты, включающей порошок фторидного стекла, полученный путем его предварительного размола, и добавку (около 1%) выбранного фторида РЗЭ в виде порошка с размерами частиц не более 50 нм, преимущественно 10-50 нм. Затем шихту измельчают и тщательно перемешивают, например, с помощью планетарной или вибрационной мельницы до крупности частиц фторидного стекла 0,1-0,5 мк, закладывают в пресс-форму заданного размера и прессуют под давлением 2-3 тонны на см2. После этого, не снижая давления, шихту нагревают до температуры стеклования (практически на несколько градусов выше) и выдерживают 5-10 мин. Затем температуру медленно (в течение не менее 10 мин) снижают до комнатной. В результате формируется прозрачная оптически активная керамика в виде дисков, диаметр и толщина которых задаются пресс-формой.

Предлагаемый способ позволяет стабильно получать не нуждающиеся в дополнительной обработке высококачественные объемные образцы оптически активной стеклокерамики на основе фторидного стекла, включающей равномерно распределенные в стеклянной матрице нанокристаллы фторида РЗЭ.

Заявляемые параметры процесса определены экспериментально, при этом критерием оценки являлось качество полученной оптически активной керамики, при этом контролировалось наличие кристаллической фазы фторида РЗЭ в виде равномерно распределенных наночастиц.

Примеры конкретного осуществления способа

Пример 1.

Для получения 50 граммов стеклокерамики готовят навеску шихты, в состав которой входят стекло ZBLAN (моль %): 53 ZrF4 20 BaF2 4 LaF3 3 AlF3 20 NaF и добавка фторида эрбия ErF3 в количестве 1 мас.%, для чего отвешивают 49,5 г стекла ZBLAN и 0,5 г указанного фторида.

К предварительно измельченному стеклу ZBLAN добавляют взвешенное количество ErF3 в виде нанопорошка с размерами частиц от 10 до 50 нм, шихту далее измельчают и одновременно тщательно перемешивают с помощью вибрационной мельницы в течение 20 мин (до размеров частиц стекла ZBLAN 0,1 мк), закладывают в пресс-форму, используя форму диаметром 60 мм, и прессуют под давлением 2 т/см2. После этого, не снижая давления, шихту нагревают до 300°C и выдерживают 5 мин.

В результате после охлаждения формируется диск из прозрачной оптически активной нанокерамики.

В полученном образце методами электронной микроскопии с использованием электронного сканирующего микроскопа Hitachi S 5500 при максимальном увеличении ×2000000 установлено, что наночастицы фторида РЗЭ равномерно распределены по объему образца и их размер не изменился в процессе получения стеклокерамики.

Пример 2.

Для получения 50 граммов стеклокерамики готовят навеску шихты, включающей стекло ZBLAN с добавкой 1% фторида европия EuF3 в виде нанопорошка размерами частиц от 10 до 50 нм, для чего отвешивают 49,5 г стекла ZBLAN и 0,5 г EuF3.

Далее шихту обрабатывают в соответствии с примером 1, измельчая до размеров частиц стекла ZBLAN 0,5 мк, и прессуют под давлением 2 т/см2. После этого, не снижая давления, шихту нагревают до 300°C и выдерживают 10 мин.

Результаты аналогичны результатам, полученным в примере 1.

Пример 3.

Для получения 50 граммов активной стеклокерамики готовят навеску шихты, включающей стекло состава (моль %): 40AlF3-12BaF2-22CaF2-16YF3-10SrF2 с добавкой 1% фторида европия EuF3 в виде нанопорошка с размерами частиц 10-50 нм, для чего отвешивают 49,5 г стекла указанного состава и 0,5 г EuF3.

Далее шихту обрабатывают по примеру 1, используя пресс-форму диаметром 40 мм, прессуют под давлением 3 т/см2. После этого, не снижая давления, шихту нагревают до 315°C и выдерживают 10 мин.

Результаты аналогичны результатам, полученным в примере 1.

Способ изготовления оптически активной стеклокерамики на основе фторидных стекол, содержащих фториды редкоземельных элементов, включающий приготовление порошка фторидного стекла с фторидами редкоземельных элементов, помещение приготовленного порошка в форму для прессования, нагрев до температуры, обеспечивающей стеклование, прессование и охлаждение, отличающийся тем, что приготовление порошка фторидного стекла с фторидами редкоземельных элементов осуществляют путем введения последних в виде нанопорошка с размерами частиц не более 50 нм в порошок фторидного стекла с его одновременным помолом до размеров частиц 0,1-0,5 мкм и при механическом перемешивании, при этом прессование осуществляют, прикладывая давление к форме, содержащей порошок в холодном виде, а затем осуществляют нагрев, не снижая приложенного давления.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 129.
12.04.2023
№223.018.4861

Способ получения защитных покрытий на магнийсодержащих сплавах алюминия

Изобретение относится к области гальванотехники и может быть использовано при формировании композиционных полимерсодержащих покрытий для защиты от коррозии изделий и конструкций, эксплуатируемых в неблагоприятных погодных условиях, в частности в открытом море на нефтяных платформах, в...
Тип: Изобретение
Номер охранного документа: 0002734426
Дата охранного документа: 16.10.2020
12.04.2023
№223.018.4882

Способ для измерения адгезии льда к поверхностям из различных материалов и исследовательский модуль для его осуществления

Изобретение относится к исследовательской технике. Сущность: на поверхность конуса наносят покрытие, погружают конус в воду или солевой раствор, находящиеся в конической ёмкости, после чего замораживают в термостате, устанавливают в зажимы универсальной разрывной машины и определяют усилие...
Тип: Изобретение
Номер охранного документа: 0002772065
Дата охранного документа: 16.05.2022
12.04.2023
№223.018.48ab

Способ получения ортоборатов лантана, допированных европием и висмутом

Изобретение относится к способу получения боратных люминофоров с помощью термообработки, причем в качестве прекурсора используют смесь олеата лантана, олеата европия, экстракта висмута с борной кислотой с введением октанола и триоктиламина, которую нагревают сначала в течение 1 часа при 200°C и...
Тип: Изобретение
Номер охранного документа: 0002762551
Дата охранного документа: 21.12.2021
12.04.2023
№223.018.48b2

Способ получения боратов лантана, легированных европием и тербием

Изобретение относится к получению люминесцентных материалов, используемых в светотехнике, а также в нелинейной оптике в широком спектральном диапазоне. Для получения боратных люминофоров проводят термообработку органических солей редкоземельных элементов. В качестве прекурсора используют смесь...
Тип: Изобретение
Номер охранного документа: 0002761209
Дата охранного документа: 06.12.2021
12.04.2023
№223.018.4944

Монолитные сорбционные материалы на основе полиэтиленимина для извлечения ионов тяжёлых металлов и органических загрязнителей

Изобретение относится к получению эффективных полимерных сорбционных материалов. Предложен сорбционный монолитный регенерируемый криогель на основе полиэтиленимина, который получают сшивкой молекул полиэтиленимина диглицидиловыми эфирами гликолей при отрицательных температурах с последующим...
Тип: Изобретение
Номер охранного документа: 0002741002
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.5527

Способ определения содержания сульфидов в отложениях в нефтепромысловом оборудовании

Изобретение относится к разработке и эксплуатации нефтяных месторождений. Способ предусматривает антиоксидантную обработку отобранных для анализа образцов 5-8% раствором аскорбиновой кислоты, последующую обработку взвешенной пробы 20% раствором соляной кислоты в установке для определения...
Тип: Изобретение
Номер охранного документа: 0002735372
Дата охранного документа: 30.10.2020
15.05.2023
№223.018.58b4

Центробежный обогатительно-классифицирующий аппарат

Предложенное изобретение относится к устройствам для разделения дисперсных материалов на фракции по крупности, в частности, к классификаторам с гравитационным обогащением и принудительной разгрузкой, и может найти применение в горнорудной промышленности при переработке золотосодержащих песков...
Тип: Изобретение
Номер охранного документа: 0002764714
Дата охранного документа: 19.01.2022
15.05.2023
№223.018.5936

Способ переработки сточных вод, содержащих фенол и его производные

Изобретение относится к способу очистки сточных вод от фенолов и гидроксипроизводных фенолов путем гидротермального окисления растворов в присутствии пероксида водорода. Способ характеризуется тем, что очистку проводят в реакторе проточного типа при рабочем давлении 10 МПа и температурах...
Тип: Изобретение
Номер охранного документа: 0002760130
Дата охранного документа: 22.11.2021
16.05.2023
№223.018.61cc

Способ очистки промышленных сточных вод от тяжелых металлов

Предложен способ очистки промышленных сточных вод от тяжелых металлов, включающий внесение сорбционного материала на основе оксидов железа в сточные воды с механическим перемешиванием и отделение твердого вещества от очищаемого раствора с помощью магнитных средств, где в качестве сорбционного...
Тип: Изобретение
Номер охранного документа: 0002748672
Дата охранного документа: 28.05.2021
03.06.2023
№223.018.7603

Способ очистки зольного графита

Изобретение относится к технологии получения малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, для получения многокомпонентного стекла, трубчатых нагревателей, а также...
Тип: Изобретение
Номер охранного документа: 0002777765
Дата охранного документа: 09.08.2022
Показаны записи 61-66 из 66.
13.02.2018
№218.016.240c

Способ получения пористого магнитного сорбента

Изобретение относится к получению сорбентов. Предложен способ получения пористого магнитного сорбента нефтепродуктов. Согласно изобретению проводят синтез моносиликата кальция структуры ксонотлита путем взаимодействия в растворе хлорида кальция и силиката натрия в присутствии силан-силоксановой...
Тип: Изобретение
Номер охранного документа: 0002642629
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2c2b

Резорбируемый рентгеноконтрастный кальций-фосфатный цемент для костной пластики

Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях. Рентгеноконтрастный инжектируемый кальций-фосфатный цемент для костной пластики содержит в качестве рентгеноконтрастного вещества оксид тантала TaO, дополнительно...
Тип: Изобретение
Номер охранного документа: 0002643337
Дата охранного документа: 31.01.2018
08.04.2019
№219.016.fe65

Способ изготовления слоистых стеклометаллокомпозитов

Изобретение относится к способу получения слоистого стеклометаллокомпозита. Способ включает формирование стеклометаллопакета путем укладки чередующихся пластин из алюминия или его сплава, предварительно выдержанных в течение 5-10 минут в расплаве стекла с температурой стеклования 450-550°С,...
Тип: Изобретение
Номер охранного документа: 0002684255
Дата охранного документа: 04.04.2019
19.04.2019
№219.017.2fd4

Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата

Изобретение относится к морской технике и касается технологии изготовления прочного корпуса подводного аппарата. Сущность изобретения заключается в том, что цилиндрическую оболочку прочного корпуса подводного аппарата формируют из стеклянного слоя, облицованного металлическим покрытием в виде...
Тип: Изобретение
Номер охранного документа: 0002337036
Дата охранного документа: 27.10.2008
09.08.2019
№219.017.bd46

Способ изготовления цилиндрического корпуса подводного аппарата

Изобретение относится к технологии формирования слоистых стеклометаллокомпозитов и может найти применение при изготовлении изделий и конструкций повышенной прочности, в частности в судостроении при изготовлении корпусов подводных аппаратов. Цилиндрический корпус подводного аппарата формируют из...
Тип: Изобретение
Номер охранного документа: 0002696536
Дата охранного документа: 02.08.2019
15.10.2019
№219.017.d595

Способ изготовления стеклометаллокомпозита

Изобретение относится к способам соединения разнородных материалов, а именно стекла и металла, в частности алюминия либо его сплава, с получением стеклометаллокомпозитов, и может найти применение при изготовлении панелей для различных конструкций в строительстве и других отраслях, труб,...
Тип: Изобретение
Номер охранного документа: 0002702799
Дата охранного документа: 11.10.2019
+ добавить свой РИД