×
20.06.2014
216.012.d248

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА УГЛОВОЙ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к управлению ориентацией космического аппарата (КА). В предлагаемом способе сигнал гироизмерений вектора угловой скорости (ВУС) используют для формирования сигнала управления. При этом после отказа одного гироскопа формируют сигнал среднего значения астроизмерений ВУС. При отказе двух или более гироскопов формируют сигнал идентификации ВУС, а для формирования управления используют сигнал среднего значения астроизмерений ВУС. При отказе астродатчика для формирования сигнала управления используют сигнал идентификации ВУС. Предлагаемое устройство структурно включает в себя КА и его модель, астродатчик, гироскопический измеритель ВУС, формирователи сигналов гиро- и астрокватернионов и кватерниона сигнала идентификации ВУС. В состав устройства введены два нелинейных блока и два формирователя сигнала переключения. Указанные элементы соединены между собой через цепи с сумматорами, нормально-замкнутыми и нормально-разомкнутыми переключателями. Технический результат группы изобретений заключается в повышении надежности и точности измерения вектора угловой скорости КА. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области ракетной техники, а именно к способам измерения ориентации и угловой скорости космических аппаратов.

Известен способ измерения угловой скорости космического аппарата и устройство для его реализации, заключающийся в формировании гироскопического сигнала и астросигнала и использовании их для формирования управления, а также устройство его реализующее, содержащее сумматоры, гироскопы и телекамеру (астродатчик) [1].

К недостаткам известных способа и устройства относится низкая надежность измерения и значительная ошибка измерения угловой скорости.

Известен способ измерения вектора угловой скорости космического аппарата, заключающийся в том, что формируют сигнал гироизмерений вектора угловой скорости и используют его для формирования сигнала управления, и устройство для его реализации, содержащее последовательно соединенные космический аппарат, гироскопический измеритель вектора угловой скорости, формирователь сигнала гирокватерниона и первый сумматор, астродатчик, выход которого подключен через формирователь сигнала астрокватерниона ко второму входу первого сумматора и первому входу второго сумматора, модель космического аппарата, выход которого через формирователь кватерниона сигнала идентификации соединен со вторым входом второго сумматора [2] (прототип).

Низкая точность и надежность измерения вектора угловой скорости являются их недостатками.

С целью исключения указанных недостатков предложенное техническое решение задачи, в котором способ отличается тем, что после отказа первого гироскопа формируют сигнал среднего значения астроизмерений вектора угловой скорости, при отказе двух или более гироскопов формируют сигнал идентификации вектора угловой скорости, а для формирования управления используют сигнал среднего значения астроизмерений вектора угловой скорости,

при отказе астродатчика для формирования сигнала управления используют сигнал идентификации вектора угловой скорости,

а реализующее его устройство отличается тем, что оно содержит два нелинейных блока, два формирователя сигнала переключения, четыре нормально-разомкнутых переключателя, два нормально-замкнутых переключателя и третий сумматор, первый вход первого сумматора через первый нормально-замкнутый переключатель соединен с первым входом третьего сумматора, выход первого сумматора через последовательно соединенные первый нелинейный блок, первый формирователь сигнала переключения, первый нормально-разомкнутый переключатель и второй нормально-замкнутый переключатель соединен со вторым входом третьего сумматора, выход первого формирователя сигнала переключения соединен со вторым входом первого нормально-замкнутого переключателя, второй вход первого сумматора соединен со вторым входом первого нормально-разомкнутого переключателя, второй выход космического летательного аппарата через второй нормально-разомкнутый переключатель соединен со входом астродатчика, а вход - через третий нормально-разомкнутый переключатель соединен со входом модели космического аппарата, выход второго сумматора через последовательно соединенные второй нелинейный блок и второй формирователь сигнала переключения соединен со вторым входом второго нормально-замкнутого переключателя, а выход формирователя сигнала кватерниона соединен через третий нормально-разомкнутый переключатель с третьим входом третьего сумматора.

Изобретение поясняется фиг.1, на которой изображено устройство для реализации способа измерения вектора угловой скорости космического аппарата, фиг.2, на которой представлена характеристика нелинейных блоков, и фиг.3 с изображением математической модели космического аппарата. При этом под космическим аппаратом понимается соединение исполнительного элемента и собственно космического аппарата.

На фигурах приняты следующие обозначения:

1 - космический аппарат (КА);

2 - гироскопический измеритель вектора угловой скорости (ГИВУС);

3 - формирователь сигнала гирокватерниона;

4 - первый сумматор;

5 - первый нелинейный блок;

6 - первый формирователь сигнала переключения;

7 - первый нормально-замкнутый переключатель;

8 - третий нормально-разомкнутый переключатель;

9 - второй нормально-замкнутый переключатель;

10 - первый нормально-разомкнутый переключатель;

11 - четвертый нормально-разомкнутый переключатель;

12 - второй нормально-разомкнутый переключатель;

13 - астродатчик;

14 - формирователь сигнала астрокватерниона;

15 - третий сумматор;

16 - второй сумматор;

17 - второй нелинейный блок;

18 - второй формирователь сигнала переключения;

19 - (математическая) модель космического аппарата;

20 - формирователь кватерниона сигнала идентификации;

21 - сигнал управления;

22 - первый сигнал переключения;

23 - сигнал кватерниона вектора угловой скорости для формирования сигнала управления 21;

24 - второй сигнал переключения;

25 - третий сигнал переключения;

26 - исполнительное устройство (в частном случае комплекс управляемых двигателей-маховиков);

27 - третий сумматор;

28 - первый интегратор;

29 - четвертый сумматор;

30 - второй интегратор;

31 - третий нормально-замкнутый переключатель;

32 - первый усилитель;

33 - пятый сумматор;

34 - четвертый нормально-замкнутый переключатель;

35 - второй усилитель;

36 - шестой сумматор;

37 - четвертый сигнал переключения;

38 - пятый сигнал переключения;

39 - пятый нормально-разомкнутый переключатель.

Рассматривается система измерения вектора угловой скорости в бесплатформенной инерциальной навигационной системе.

Гироскопические измерители вектора угловой скорости (ГИВУС) 2 космического аппарата (КА) обладают тем достоинством, которое обеспечивает их автономность - без связи с Землей. Гироскопические датчики угловой скорости устанавливаются непосредственно на борту космического аппарата и связаны с бортовой вычислительной машиной, которая непрерывно производит расчет курса, крена и тангажа или иных параметров, определяющих ориентацию космического аппарата относительно базовой системы координат.

Вследствие уходов гироскопов их точность со временем падает, что можно считать недостатком гироскопических измерителей.

При этом вычислительная машина может производить и фильтрацию обрабатываемых сигналов.

Отказы чувствительных элементов ГИВУС 2 могут приводить к невыполнению задачи системы управления ориентацией КА [2].

Отдельное использование астродатчиков 13 приводит к наличию шумов при измерении угловой скорости КА, т.е. к зависимости измерений от внешних условий, а также к пропаданию сигналов измерения.

В случае известности дифференциального уравнения движения КА можно использовать математическую модель КА 19 для идентификации параметров и состояния КА (при условии, что параметры КА мало меняются во времени).

При этом показания астродатчиков 13 используются для поправки показаний вектора угловой скорости при гироизмерениях [2]. В некоторых режимах можно использовать показания только астродатчиков.

Использование четырех параметров (Родрига-Гамильтона, Кейли-Клейна) для описания конечного поворота твердого тела (КА) или с использованием кватернионов расширяют число подходов к построению бесплатформенной инерциальной системы [2].

В предложенном техническом решении для описания конечного поворота КА используются параметры Родрига-Гамильтона и математический аппарат кватернионов.

ГИВУС использует в своем составе четыре гироскопа согласно устройству для реализации способа измерения вектора угловой скорости (фиг.1). При исправных гироскопах сигнал вектора угловой скорости с выхода ГИВУС 2 поступает на формирователь гирокватерниона 3. Полученный на выходе сигнал поступает через первый нормально-замкнутый контакт 7 на вход третьего сумматора 15, выходной сигнал 23 которого используется для формирования управления 21.

После поступления сигнала неисправности одного из четырех гироскопов, входящих в состав ГИВУС 2, формируется сигнал 22, который подключает астродатчик 13 через второй нормально-разомкнутый переключатель 12. Сигнал астрокватерниона с выхода формирователя астрокватерниона 14 сравнивается с выходом сигнала гирокватерниона с выхода формирователя гирокватерниона 3.

Если разность сигналов гирокватерниона и астрокватерниона не превосходит по модулю |u| заданного значения, то контакт первого нормально-замкнутого переключателя 7 не размыкается. И для формирования управления 21 используется значение выхода формирователя гирокватерниона 3.

В противном случае контакт первого нормально-замкнутого переключателя 7 размыкается, а контакт первого нормально-разомкнутого переключателя 10 замыкается по команде с выхода первого формирователя сигнала переключения 6. В этом случае на выход третьего сумматора 15 проходит сигнал с выхода формирователя сигнала астрокватерниона 14 через переключатели 10 и 9.

Одновременно с замыканием нормально-разомкнутого контакта переключателя 10 формируется сигнал 25 на подключение модели 19 космического аппарата через третий нормально-разомкнутый переключатель 8 к сигналу управления 21.

Далее после выхода из строя астродатчика 13 сигнал на выходе нелинейного блока 17 превысит допуск, установленный его нелинейной характеристикой (фиг.2), второй формирователь сигнала переключения 18, второй нормально-замкнутый переключатель 9 отсоединит выход сигнала астрокватерниона 14 от входа третьего сумматора 15, а по команде сигнала переключения 24 выход формирователя кватерниона 20 будет подключен ко входу третьего сумматора 15.

На фиг.1 указаны векторные связи, кроме связей элементов схемы 3-4-5-6, 14-4, 14-16, 17-18 и 20-16.

Среднее значение угловой скорости формируется на выходе астродатчика 13 путем дифференцирования среднего значения угла. Среднее значение угла определяется на выходе апериодического звена, входящего в состав астроследящей системы [6].

Дифференциатор входит в состав астродатчика 13 вместе с астроследящей системой - на фиг.1 астродатчик имеет два выхода. Обозначение является средним значением угловой скорости по углу крена φ(t), т.е. это полная производная по времени t угла крена

Значение поступает по схеме фиг.1 на вход формирователя сигнала астрокватерниона 14 и совместно с углом крена φ(t) на один из входов математической модели 19. На фиг.3 изображена структурная схема математической модели только по углу крена φ(t), на которой приведены добавленные элементы: 27, 31, 32 и 33 - для установки начальных условий на выходе первого интегратора 28, и добавленные элементы: 29, 34, 35 и 36 - для установки начальных условий на выходе второго интегратора 30.

Установка начальных условий на выходах первого 28 и второго 30 интеграторов необходима для плавного перехода с измерений астродатчиком 13 на измерения с помощью математической модели 19.

Среднее значение поступает на вход пятого сумматора 33, на второй вход которого поступает сигнал с выхода первого интегратора 28. На выходе пятого сумматора 33 разностный сигнал , который через последовательно соединенные первый усилитель 32, третий нормально-замкнутый переключатель 31 и третий сумматор 27 поступает на вход первого интегратора 28. На выходе первого интегратора 28 сигнал изменяется до тех пор, пока не станет выполняться равенство .

Аналогично устанавливаются начальные условия на выходе второго интегратора 30 с помощью элементов схемы фиг.3: 29, 34, 35 и 36.

В момент перехода измерений с выхода астродатчика 13 на выход математической модели 19 нормально-замкнутые переключатели 31 и 34 размыкаются, а нормально-разомкнутый переключатель 39 замыкается. Значение поступает на вход формирователя кватерниона сигнала идентификации 20.

Структуры математической модели 19 по углам тангажа ν(t) и рыскания ψ(t) имеют аналогичное изображение, полностью совпадающее со структурой угла крена по фиг.3.

Формирователи сигнала гирокватерниона 3, астрокватерниона 14 и кватерниона сигнала идентификации являются обычными кватернионами и отличаются только входными сигналами - на вход первого поступает сигнал с выхода ГИВУС, на вход второго - с выхода астродатчика, а на вход третьего - с выхода математической модели 19. На выходах формирователей кватернионов 3, 14 и 20 формируется векторный сигнал, состоящий из пяти сигналов: коэффициентов λ0, λ1, λ2, λ3 и ||Λ||2 по обозначениям, приведенным в [3], и которые определяют кватернион Λ в четырехмерном пространстве H в виде точки Λ=λ01i+λ2j+λ3K, или в виде точки .

Составляющие с выхода формирователя сигнала гирокватерниона 3 λ0, λ1, λ2, λ3 через четыре параллельных нормально-замкнутых контакта переключателя 7 соответственно поступают на один из входов третьего сумматора 15.

Сигналы и с выходов формирователя сигнала гирокватерниона 3 и формирователя сигнала астрокватерниона 14 соответственно сравниваются.

Если разностный сигнал больше допустимого U2, установленного в первом нелинейном блоке 5, срабатывает первый формирователь сигнала переключения 6, который размыкает четыре нормально-замкнутых контакта первого переключателя 7 и замыкает четыре контакта первого нормально-разомкнутого переключателя 10. При этом на второй вход третьего сумматора 15 поступают уже значения λ0, λ1, λ2, λ3 с выхода формирователя сигнала астрокватерниона 14. Сигнал на входе первого нелинейного блока 5 превысит пороговое значение U2 при значительных «уходах» гироскопов, в том числе и при выходе из строя одного или двух гироскопов.

Функционирование второго сумматора 16, второго нелинейного блока 17, формирователя сигнала переключения 18 и второго нормально-замкнутого переключателя 9 аналогично функционированию первого сумматора 4, первого нелинейного блока 5, первого формирователя сигнала переключения 6 и первого нормально-замкнутого переключателя 7.

Изображение многомерных матричных блоков и схем общеизвестно в системах управления [4] при моделировании [5].

Таким образом, гироскопы ГИВУС′а 2, астродатчик 13 и модель КА 19 будут подключаться по очереди: в начале работы КА 1 будут использованы для формирователя управления 21 гироскопы, после отказа гироскопов астродатчик 13, а затем после отказа астродатчика 13 - модель КА 19.

Технический результат от применения предложенного технического решения (способа и устройства для его реализации) заключается в повышении надежности измерения вектора угловой скорости КА.

Изобретательский уровень предложенного технического решения задачи подтверждается отличительной частью формулы изобретения на способ измерения вектора состояния и устройства для его реализации.

Литература

1. Б.Я. Лурье, П.Дж. Энрайт, Классические методы автоматического управления. - Санкт-Петербург: Изд-во БХВ-Петербург, 2004. - С.158-159.

2. Уханов Е.В. Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата. Дипломная работа. - Харьков, 2005. - НТУ «Харьковский политехнический ин-т». С.35-85 и 15-34 (соответственно «способ» и «устройство). Прототип.

3. Применение кватернионов в задачах ориентации твердого тела. В.Н. Бранец, И.П. Шмыглевский. - М.: Наука, 1973. - С.11-12.

4. В.В. Семенов, А.В. Пантелеев, А.С. Бортаковский. Математическая теория управления в примерах и задачах. - М.: Изд-во МАИ, 1997. - С.13-14, 26-27.

5. И.В. Черных. Simulink: Среда создания инженерных приложений. - М.: Диалог - МИФИ, 2003. - С.32-294.

6. Астроследящие системы. Под редакцией Б.К. Чемоданова. - М.: Машиностроение, 1973. - С.155, 151, 159.


СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА УГЛОВОЙ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА УГЛОВОЙ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА УГЛОВОЙ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 58.
18.05.2018
№218.016.5198

Способ формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления и устройство для его осуществления

Группа изобретений относится к способу и устройству формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления. Для формирования сигнала угловой стабилизации задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют его...
Тип: Изобретение
Номер охранного документа: 0002653409
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.56fc

Способ определения неисправностей гироскопического измерителя вектора угловой скорости космического аппарата и устройство для его реализации

Изобретение относится к области бортового приборостроения и может найти применение для определения неисправностей гироскопического измерителя вектора угловой скорости (ГИВУС) космического аппарата. Технический результат – расширение функциональных возможностей на основе повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002655008
Дата охранного документа: 23.05.2018
24.01.2019
№219.016.b353

Устройство и способ концевой заделки кабеля с угловым вводом в электрический соединитель

Устройство концевой заделки кабеля с угловым вводом в электрический соединитель относится к области электротехники и может быть использовано при разработке кабельных сборок с ограничением габаритных размеров и заданным углом ввода кабеля. Устройство содержит формообразующую пружину 1,...
Тип: Изобретение
Номер охранного документа: 0002677850
Дата охранного документа: 22.01.2019
01.03.2019
№219.016.cfa6

Способ формирования отказоустойчивой вычислительной системы и отказоустойчивая вычислительная система

Изобретение относится к вычислительной технике, может быть использовано для построения высоконадежных отказоустойчивых бортовых управляющих комплексов. Техническим результатом является повышение надежности системы. Система содержит четыре грани. Каждая грань содержит параллельно работающую...
Тип: Изобретение
Номер охранного документа: 0002439674
Дата охранного документа: 10.01.2012
01.03.2019
№219.016.cfe0

Способ формирования 4-канальной отказоустойчивой системы бортового комплекса управления повышенной живучести и эффективного энергопотребления и его реализация для космических применений

Изобретение относится к вычислительной технике и может быть использовано для построения высоконадежных отказоустойчивых интегрированных бортовых управляющих комплексов в космической, авиационной, ядерной, химической, энергетической и других отраслях. Техническим результатом предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002449352
Дата охранного документа: 27.04.2012
01.03.2019
№219.016.d071

Способ определения момента времени окончания маневра и отсечки маршевого двигателя разгонного блока

Изобретение относится к области терминального управления траекторным движением разгонных блоков (РБ), выводящих космические аппараты (КА) на заданные орбиты с помощью маршевого двигателя с нерегулируемой тягой. В данном способе при переходе на терминальное управление на последнем маневре, перед...
Тип: Изобретение
Номер охранного документа: 0002467930
Дата охранного документа: 27.11.2012
01.03.2019
№219.016.d093

Способ ориентации солнечной батареи космического аппарата по току

Изобретение относится к системам электроснабжения космических аппаратов. Способ включает задание расчетной угловой скорости вращения солнечной батареи (СБ), превышающей на порядок и более угловую скорость обращения космического аппарата вокруг Земли. При этом измеряют вырабатываемый СБ ток,...
Тип: Изобретение
Номер охранного документа: 0002465179
Дата охранного документа: 27.10.2012
01.03.2019
№219.016.d09f

Способ управления положением солнечной батареи космического аппарата при частичных отказах датчика угла

Изобретение относится к системам электроснабжения космических аппаратов (КА). Согласно способу, солнечную батарею (СБ) КА вращают с установившейся расчетной угловой скоростью, на порядок и более превышающей угловую скорость обращения КА по орбите вокруг Земли. Определяют угловое положение...
Тип: Изобретение
Номер охранного документа: 0002465180
Дата охранного документа: 27.10.2012
01.03.2019
№219.016.d0cb

Способ коррекции времени включения маршевого двигателя разгонного блока на участке доразгона

Изобретение относится к области ракетно-космической техники. Способ коррекции времени включения маршевого двигателя разгонного блока на этапе доразгона космического аппарата заключается в том, что определяют расчетную длительность работы двигателя, вычисляют значение функционала энергии,...
Тип: Изобретение
Номер охранного документа: 0002461496
Дата охранного документа: 20.09.2012
14.03.2019
№219.016.def1

Способ формирования сигнала управления рулевым приводом беспилотного летательного аппарата и устройство для его осуществления

Группа изобретений относится к способу и устройству формирования сигнала управления рулевым приводом беспилотного летательного аппарата (БПЛА). Для формирования сигнала управления задают сигнал управления, усиливают его и ограничивают, фильтруют сигнал вычитания, усиливают отфильтрованный...
Тип: Изобретение
Номер охранного документа: 0002681823
Дата охранного документа: 12.03.2019
Показаны записи 41-50 из 77.
18.05.2018
№218.016.5198

Способ формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления и устройство для его осуществления

Группа изобретений относится к способу и устройству формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления. Для формирования сигнала угловой стабилизации задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют его...
Тип: Изобретение
Номер охранного документа: 0002653409
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.56fc

Способ определения неисправностей гироскопического измерителя вектора угловой скорости космического аппарата и устройство для его реализации

Изобретение относится к области бортового приборостроения и может найти применение для определения неисправностей гироскопического измерителя вектора угловой скорости (ГИВУС) космического аппарата. Технический результат – расширение функциональных возможностей на основе повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002655008
Дата охранного документа: 23.05.2018
16.02.2019
№219.016.bbba

Способ формирования интегрального сигнала управления для систем автоматического регулирования и устройство для его осуществления

Изобретение относится к системам автоматического управления или регулирования линейных или угловых скоростей и может быть использовано в системах автоматического регулирования различных объектов. Достигаемый технический результат - повышение динамической точности и быстродействия устройства....
Тип: Изобретение
Номер охранного документа: 0002403608
Дата охранного документа: 10.11.2010
20.02.2019
№219.016.c1f7

Способ ориентации в пространстве осей связанной системы координат космического аппарата

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ заключается в том, что оси связанной системы координат КА (X, Y, Z) совмещают с осями солнечно-орбитальной системы координат (Х, Y, Z). При этом ось Y направлена на Солнце, а совмещаемая с ней...
Тип: Изобретение
Номер охранного документа: 0002428361
Дата охранного документа: 10.09.2011
01.03.2019
№219.016.cb80

Адаптивное устройство формирования сигнала управления продольно-балансировочным движением летательного аппарата

Изобретение относится к области авиакосмического приборостроения и может найти применение при проектировании бортовых систем автоматического управления летательными аппаратами. Технический результат - расширение функциональных возможностей. Для достижения данного результата устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002394263
Дата охранного документа: 10.07.2010
01.03.2019
№219.016.cc0f

Способ калибровки импульса тяги маршевого двигателя

Изобретение относится к области управления движением космических аппаратов (КА) с помощью реактивных двигателей и м.б. использовано при выведении КА на заданную орбиту с помощью разгонного блока. Способ включает определение значения функционала энергии через фиксированное время после отключения...
Тип: Изобретение
Номер охранного документа: 0002388665
Дата охранного документа: 10.05.2010
01.03.2019
№219.016.ccb1

Бортовая система угловой стабилизации для управления нестационарным летательным аппаратом

Изобретение относится к области приборостроения и может быть использовано для управления существенно нестационарными беспилотными летательными аппаратами. Технической результат - обеспечение инвариантности показателей качества процессов стабилизации и повышение точности управления. Для...
Тип: Изобретение
Номер охранного документа: 0002338236
Дата охранного документа: 10.11.2008
01.03.2019
№219.016.ccbc

Способ формирования адаптивного сигнала управления угловым движением нестационарного летательного аппарата

Изобретение относится к области приборостроения и может быть использовано в бортовых системах автоматического управления существенно нестационарными беспилотными летательными аппаратами. Технической результат - обеспечение инвариантности показателей качества процессов стабилизации и повышение...
Тип: Изобретение
Номер охранного документа: 0002338235
Дата охранного документа: 10.11.2008
01.03.2019
№219.016.cd3f

Устройство координированного управления летательным аппаратом

Изобретение относится к области приборостроения и может найти применение в бортовых системах автоматического управления летательными аппаратами с реализацией режимов координированных разворотов. Технический результат - расширение функциональных возможностей и повышение динамической точности...
Тип: Изобретение
Номер охранного документа: 0002367992
Дата охранного документа: 20.09.2009
01.03.2019
№219.016.ce78

Способ управления движением разгонного блока на участке доразгона

Изобретение относится к управлению движением разгонного блока (РБ) при его выведении на орбиту. Согласно способу после отделения РБ от ракеты-носителя (РН) выполняют прогноз его движения на четырех последовательных временных участках. Первым из них является пассивный участок до заданного...
Тип: Изобретение
Номер охранного документа: 0002424954
Дата охранного документа: 27.07.2011
+ добавить свой РИД