×
10.06.2014
216.012.ce6d

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ОБЪЕКТОВ ИЗ НЕМАГНИТНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов. Способ измерения деформаций из немагнитных материалов характеризуется тем, что на поверхности или внутри объекта размещают постоянные дипольные источники магнитного поля, например на основе магнитов из сплава неодим-железо-бор, при этом для вычисления параметров линейной (вдоль прямой линии) деформации используют как минимум два магнита не лежащие в одной точке, для вычисления параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для вычисления параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости. Возле поверхности исследуемого объекта напротив каждого источника устанавливают систему датчиков, позволяющих измерить по 1, 2, 3 компоненты вектора индукции магнитного поля в нескольких точках, сосредоточенных в малой по сравнению с расстоянием до источников поля области пространства, или в качестве системы датчиков используют одно-, двух- или трехосевой датчик с системой 3D-позиционирования, сигналы с датчиков усиливают и преобразуют в цифровой вид, численные данные измерений: координаты точек измерения и значения компонент векторов индукции магнитного поля в них в лабораторной системе координат обрабатывают компьютерной программой, по полученным данным решают обратную задачу для системы слабо взаимодействующих магнитов и определяют их местоположение в лабораторной системе координат и векторы магнитных моментов в лабораторной системе координат до и после деформирования объекта, и, сравнивая эти решения, вычисляют параметры деформации. Описана установка для предлагаемого способа. Технический результат - возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов. 2 н. и 3 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов.

Известно устройство (взято за прототип) для измерения толщины немагнитных материалов, содержащее измерительную головку с магнитом и размещенным на нем датчиком Холла, сигнальные электроды которого через усилитель подключены к индикатору, а токовые - к выходам блока питания, ферромагнитный элемент в виде шарика, располагаемого с противоположной стороны измеряемого материала. Шарик помещен в контейнер с дном, выполненным в виде ферромагнитной пластины и имеющим открытое для наблюдения окно (патент РФ №2222776 МПК 01В 7/06, опубл. 27.0103 г.).

Недостатком прототипа является ограниченный диапазон измеряемых величин, а также невысокая точность измерения.

Задачей изобретения является устранение недостатков прототипа и возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов.

Поставленная задача решается с помощью признаков, указанных в п.1 формулы изобретения, таких как способ измерения деформаций объектов из немагнитных материалов, характеризующийся тем, что на поверхности или внутри объекта размещают постоянные дипольные источники поля, например на основе сплава неодим-железо-бор, при этом для вычисления параметров однополярной деформации используют как минимум два магнита, не лежащие в одной точке, для параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости, затем возле поверхности исследуемого объекта напротив каждого источника устанавливают систему датчиков, позволяющих измерить по 1, 2, 3 компоненты вектора индукции магнитного поля в нескольких точках, сосредоточенных в расположенных в малой по сравнению с расстоянием до источников поля области пространства, или в качестве системы датчиков используют датчик с системой 3D-позиционирования, сигналы с датчиков усиливают и преобразуют в цифровой вид, численные данные измерений: координаты точек измерения и значения компонент векторов индукции магнитного поля в них в лабораторной системе координат обрабатывают компьютерной программой, по полученным данным решают обратную задачу для системы слабо взаимодействующих магнитов и определяют их местоположение в лабораторной системе координат и векторы магнитных моментов в лабораторной системе координат до и после деформирования объекта, и, сравнивая эти решения, вычисляют параметры деформации.

Согласно п.2. формулы в качестве источников берут магниты, примерно равные по модулю.

Согласно п.3 формулы для закрепления на поверхности исследуемого объекта предпочтительно используют постоянные магниты цилиндрической или кубической формы, а при внедрении в тело объекта предпочтительно используют постоянные магниты шарообразной формы.

Согласно п.4 формулы датчики магнитного поля должны измерять по 1, 2, 3 компоненты вектора индукции магнитного поля в каждой точке области измерения, обладать большим динамическим диапазоном, высокой чувствительностью, высоким разрешением, малыми по сравнению с размером области измерения размерами чувствительной области и высокой линейностью.

Поставленная задача решается с помощью признаков, указанных в п.5 формулы изобретения, а именно установка для измерения деформаций объектов из немагнитных материалов согласно вышеописанному способу содержит постоянные дипольные источники магнитного поля, выполненные, например, в виде магнитов из сплава неодим-железо-бор цилиндрической, кубической и шарообразной формы, размещенные на поверхности или внедренные внутрь исследуемого объекта, примерно напротив которых установлены датчики, сигналы с которых поступают на вход усилителя, выход которого связан с входом аналого-цифрового преобразователя, выход которого связан с входом вычислительного модуля, например персонального компьютера, с помощью компьютерной программы усиленный сигнал в АЦП преобразуется в цифровой вид, по полученным данным измерения магнитного поля в областях измерения решается обратная задача для системы слабо взаимодействующих диполей, определяются координаты местоположения диполей и значения их векторов магнитных моментов в системе координат, имея информацию о местоположении диполей до и после деформации объекта, вычисляют параметры деформации исследуемого объекта.

Согласно п.6 формулы для измерения линейной деформации устанавливают на объект минимум два магнита, не лежащие в одной точке, для измерения плоской деформации устанавливают на или в объект минимум три магнита, лежащие в одной плоскости и не лежащие на одной прямой, для измерения объемной деформации устанавливают на или в объект минимум четыре магнита, не лежащие в одной плоскости.

Вышеперечисленная совокупность существенных признаков позволяет получить следующий технический результат - возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов.

Изобретение иллюстрируется следующей схемой установки (см. чертеж) и примерами реализации способа.

Установка для измерения деформаций объектов из немагнитных материалов содержит постоянные дипольные источники магнитного поля 1, выполненные, например, в виде магнитов из сплава ниодим-железо-бор цилиндрической, кубической и шарообразной формы, размещенные или внедренные в исследуемый объект 2, примерно напротив которых установлены датчики 3 (S1, S2, S3, S4), сигналы с которых поступают на вход усилителя 4, выход которого связан с входом аналого-цифрового преобразователя 5, выход которого связан с входом вычислительного модуля 6 (ОЗД), например, персонального компьютера, с помощью компьютерной программы 7 (авт.свид. РФ №2011616795 «Программа для решений обратных задач для одного и нескольких слабо взаимодействующих точечных магнитных диполей», авторы Машкин С.В., Марценюк М.А.) усиленный сигнал в АЦП преобразуется в цифровой вид, по полученным данным измерения магнитного поля в областях измерения решается обратная задача для системы слабо взаимодействующих диполей и определяются координаты местоположения диполей и значения их векторов магнитных моментов в системе координат, имея информацию о местоположении диполей до и после деформации объекта, вычисляют параметры деформации исследуемого объекта.

Для измерения линейной деформации устанавливают на объект два магнита, не лежащие в одной точке, для измерения плоской деформации устанавливают на или в объект три магнита, лежащие в одной плоскости и не лежащие на одной прямой, а для измерения объемной деформации устанавливают на или в объект четыре магнита, не лежащие в одной плоскости.

Общие условия процесса измерений

В основе способа измерения деформации лежит метод решения обратной задачи для системы слабо взаимодействующих точечных магнитных диполей, которая, в свою очередь, использует метод решения обратной задачи для одного точечного магнитного диполя.

Имеется исследуемый объект obj из немагнитного материала (см. чертеж), на поверхности или внутри которого располагаются магнитные диполи (в качестве которых можно использовать постоянные магниты, например, на основе материала NdFeB) с магнитными моментами mi. Для вычисления параметров линейной деформации необходимо минимум 2 диполя, не лежащих в одной точке. Для вычисления параметров плоской деформации необходимо минимум 3 диполя, лежащих в одной плоскости и не лежащих на одной прямой. Для вычисления параметров объемной деформации необходимы минимум 4 диполя, не лежащих в одной плоскости (на чертеже диполи m1, m2, m3 лежат в одной плоскости, а диполь m4 лежит вне этой плоскости).

Возле поверхности исследуемого объекта примерно в одной плоскости располагаются наборы датчиков магнитного поля Si - по одному примерно напротив каждого диполя. Каждый набор датчиков представляет собой систему датчиков, позволяющих измерять по три (по две, по одной) компоненты вектора индукции магнитного поля, и расположенных в некоторой малой области пространства. Требуемые количество и взаимное расположение датчиков могут варьироваться - главное требование - возможность решения обратной задачи для точечного магнитного диполя (см. далее). Сигналы с датчиков поступают на вход усилителя amp, затем усиленный сигнал поступает на вход аналого-цифрового преобразователя АЦП и преобразуется им в цифровой вид.

Численные данные измерения поля (координаты точек измерения rsa={xsa,ysa,zsa} и значения компонент вектора индукции магнитного поля Bsa=B(rsa)={Bsax,Bsay,Bsaz} - в системе координат OXYZ) поступают в вычислительный модуль ПК (построенный, например, на базе персонального компьютера). По полученным данным измерения поля в областях измерения решается обратная задача для системы слабо взаимодействующих диполей (соответствующая программа обозначена ОЗД-N), и определяются координаты местоположения диполей и значения их векторов магнитных моментов (по сути - ориентация диполей в пространстве) в системе координат OXYZ. Метод решения ОЗД-N и соответствующая программа основаны на методе решения обратной задачи для одного точечного магнитного диполя (ОЗД-N).

Посредством описанной системы положения Хi диполей mi в системе координат OXYZ измеряются до деформации объекта obj. После прикладывания к объекту obj внешнего воздействия F возникает деформация - диполи смещаются. Их координаты после деформации снова измеряются описанным способом.

Имея информацию о местоположении (и ориентации) диполей до и после деформирования объекта, вычисляют параметры деформации G. Их, например, удобно представлять в виде матрицы аффинного преобразования (см. далее), которая описывает деформацию среды в локальной области - месте расположения диполей mi. Программа, решающая задачу определения параметров деформации, обозначена ДФРМ.

Используя большее количество магнитных диполей можно измерить параметры деформации во всех интересующих участках исследуемого объекта. Для этого удобно распределить необходимое количество диполей в узлах почти прямоугольной сетки у(или на) поверхности объекта и для определения параметров деформации использовать тройки (для плоской задачи) или четверки (для объемной задачи) близлежащих диполей.

В качестве источников берут магниты, примерно равные по модулю. Для закрепления на поверхности исследуемого объекта предпочтительно используют постоянные магниты цилиндрической или кубической формы, а при внедрении в тело объекта предпочтительно используют постоянные магниты шарообразной формы. Датчики магнитного поля должны измерять по 1, 2, 3 компоненты вектора индукции магнитного поля в каждой точке области измерения, обладать большим динамическим диапазоном, высокой чувствительностью, высоким разрешением, малыми по сравнению с размером области измерения размерами чувствительной области и высокой линейностью.

Для реализации предложенного способа измерения деформации была использована установка, обладающая следующими основными характеристиками (табл.1 и 2).

Таблица 1
Общие характеристики экспериментальной установки
Максимальная частота дискретизации (при измерении на одном канале), Гц 40000
Количество входных каналов АЦП (однополярных) 8
Разрядность АЦП, бит 12
Количество независимых каналов входного усилителя 4
Коэффициенты предусиления (изменяются переключением перемычек на плате входного усилителя, независимо для каждого канала) - К0 1, 10, 100
Коэффициенты усиления входных усилителей (выбор производится программно, независимо для каждого канала) - К 0.5, 2, 8, 32, 128, 512
Максимальное измеряемое напряжение (К0=1, К=0.5), В ±2.5
Разрешающая способность, В 2.5/4096/ (К0*К)
Компенсируемое напряжение смещения на входе, мВ ±50/К0
Количество ЦАП 2
Разрядность ЦАП, бит 12
Диапазон изменения напряжения на выходах выходных усилителей ЦАП, В ±2.5
Количество обслуживаемых шаговых двигателей 3
Минимальный шаг системы позиционирования, мм 0.095
Максимальное количество шагов 125×125
Размер зоны измерения 11.9 мм × 11.9 мм
Тактовая частота микроконтроллера (1 инструкция - 1 такт), МГц 16
Размер памяти программ, Кбайт 128
Размер ОЗУ, Кбайт 4+32
Скорость обмена с ПК по каналу RS-232, бод/с 115200

Таблица 2
Характеристики экспериментальной установки при использовании датчиков 2SA-10
Линейный диапазон измеряемого поля, мТл ±40
Максимальный диапазон измеряемого поля, мТл ±45
Разрешающая способность (К0=1, К=512, число измерений = 10000), мкТл ±2
Нелинейность (в линейном диапазоне измеряемого поля), % 0.2
Максимальная частота изменения измеряемого поля, кГц 0.1

Для измерения вектора индукции магнитного поля использовался интегральный датчик Холла 2SA-10 фирмы SENTRON. Чтобы измерять 3 компоненты поля индукции использовалось 2 датчика, расположенных в перпендикулярных плоскостях. Измерение компонент вектора индукции поля двумя датчикам в одной точке достигалось соответствующим сдвигом второго датчика так, чтобы его чувствительная область располагалась в той же точке пространства, что и первая область.

Для того чтобы измерять поле в дискретном наборе точек посредством описанной выше системы из двух датчиков использовалась 3D-система позиционирования, построенная на трехшаговых двигателях. Для того чтобы исключить их влияние (они сделаны из магнитных материалов) на результаты измерения, датчики магнитного поля были удалены от них посредством достаточно длинного держателя (около 120-150 мм) из немагнитного материала (табл.3).

Таблица 3
Характеристики датчика 2SA-10
Количество измеряемых компонент поля 2
Размер чувствительной области (диаметр диска-концентратора магнитного поля), мм 0.2
Магнитная чувствительность, В/Тл 50
Линейный диапазон измеряемого поля, мТл ±40
Максимальный диапазон измеряемого поля, мТл ±45
Частота изменения измеряемого поля, кГц 0…15
Нелинейность (типичное значение в линейном диапазоне измеряемого поля), % 0.1
Напряжение смещения, мВ ±10
Максимальная спектральная плотность магнитного шума (в центре диска-концентратора), нТл/ 750
Рекомендуемое напряжение питания, В 5.0
Тип корпуса SOIC-8

Посредством описанной системы были достигнуты следующие основные результаты. При использовании в качестве источника постоянного магнита с модулем магнитного момента 0.05 А/м2, конфигурации области измерения куб 3x3x3 точки измерения с шагом 0.95 мм по каждой из осей погрешность определения местоположения магнита составила от 1 до 3 мм (растет при удалении от магнита) на расстояниях до 40 мм.

При решении ОЗД-N для случая двух слабо взаимодействующих диполей с магнитными моментами 0.012 А/м2 (цилиндры: диаметр 3 мм, высота 1.5 мм, материал NdFeB), конфигурации области измерения куб 3×3×3 точки измерения с шагом 1.9 мм по каждой из осей расстояние между источниками около 30 мм, расстояние от плоскости источников до плоскости измерения 13 мм, погрешность определения местоположения диполей составила около 1 мм.

Преимущества способа:

- способ позволяет определить не только величину пространственного сдвига контролируемых точек объекта, но и пространственный поворот среды в этих точках;

- способ дистанционный: система датчиков располагается не на исследуемом объекте, а возле него;

- способ интроскопический: исследуемый объект может быть скрыт от системы датчиков слоем из немагнитного материала;

- способ достаточно быстродействующий: быстродействие измерений ограничено, в основном, быстродействием используемых датчиков магнитного поля (на сегодняшний день - порядка нескольких тысяч измерений в секунду).


СПОСОБ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ОБЪЕКТОВ ИЗ НЕМАГНИТНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 52.
27.02.2015
№216.013.2d0e

Поршень-забойник для многоствольных строительных артиллерийских орудий

Поршень-забойник предназначен для застреливания свай в грунт из многоствольных артиллерийских орудий, включает поршни, вставляемые в каналы стволов. Поршень-забойник выполнен составным, включающим два поршня, диаметром, равным калибру стволов, с нижними частями, выполненными в виде полусфер,...
Тип: Изобретение
Номер охранного документа: 0002543002
Дата охранного документа: 27.02.2015
27.03.2015
№216.013.3601

Способ геоэлектроразведки

Изобретение относится к многоканальным геофизическим исследованиям и предназначено для решения инженерно-геологических, шахтных, геотехнических, экологических задач, поиска полезных ископаемых и подземных вод. Способ геоэлектроразведки зондирования геологической среды основан на использовании...
Тип: Изобретение
Номер охранного документа: 0002545309
Дата охранного документа: 27.03.2015
20.04.2015
№216.013.435d

Эндопротез сустава пальца кисти

Изобретение относится к медицине. Эндопротез содержит центральную часть, выполненную из эластичного материала с внутренней полостью, и внутрикостные фиксаторы, выполненные из пористого инертного материала. Поверхность эластичной центральной части и внутренняя полость имеют покрытие из слоя...
Тип: Изобретение
Номер охранного документа: 0002548743
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.45bd

Способ получения метил 1-[3-(циклогексилкарбамоил)-2-оксохроман-4-ил] циклопентакарбоксилата, проявляющего анальгетическую активность

Изобретение относится к способу получения метил 1 -[3-(циклогексилкарбамоил)-2-оксохроман-4-ил]циклопентанкарбоксилата формулы(1), который заключается в том, что метиловый эфир 1-бромциклопентанкарбоновой кислоты кипятят с цинком и циклогексиламидом 2-оксо-2H-хромен-3-карбоновой кислоты в среде...
Тип: Изобретение
Номер охранного документа: 0002549357
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.468e

Способ получения метил 1-[(1,3-диоксо-2,3-дигидро-1н-инден-2-ил)-(4-метилфенил)метил]циклогексанкарбоксилата, проявляющего анальгетическую активность

Изобретение относится к области органической химии, а именно к способу получения метил 1-[(1,3-диоксо-2,3-дигидро-1H-инден-2-ил)-(4-метилфенил)метил]циклогексанкарбоксилата (I), заключающемуся в том, что метиловый эфир 1-бромциклогексанкарбоновой кислоты кипятят с цинком и...
Тип: Изобретение
Номер охранного документа: 0002549566
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.47a1

Способ одноосного циклического испытания материала

Изобретение относится к способам испытания материалов. Сущность: образец сначала растягивают до максимальной заданной деформации, выдерживают при этой деформации заданное время, сжимают до исходного ненагруженного состояния, выдерживают заданное время, затем циклически деформируют с выдержкой...
Тип: Изобретение
Номер охранного документа: 0002549841
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.47b1

Способ выделения и определения железа (iii) в водных растворах

Изобретение может быть использовано в аналитической химии. Для выделения железа (III) из водных растворов используют в качестве первого органического реагента дифенилгуанидин (ДФГ). В качестве второго органического реагента используют салициловую кислоту (СК), а в качестве разбавителя...
Тип: Изобретение
Номер охранного документа: 0002549857
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c48

Способ размещения артиллерийских орудий в многоствольной строительной артиллерийской системе

Изобретение относится к строительным машинам, в частности к многоствольным артиллерийским системам, используемым для возведения легких фундаментов. Способ размещения артиллерийских орудий в многоствольной строительной артиллерийской системе состоит в том, что в многоствольную строительную...
Тип: Изобретение
Номер охранного документа: 0002551042
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5057

Устройство доставки веществ, предназначенных для тушения пожаров в замкнутых пространствах

Изобретение позволяет доставлять средства для тушения пожаров в замкнутые пространства, например, такие как здания и сооружения, внутри которых находятся горящие вещества, при условии, что доступ в эти здания и сооружения недоступен пожарным. Устройство доставки веществ, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002552088
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5078

Способ изготовления образцов и испытания их на двухосное растяжение

Изобретение относится к способу изготовления плоских образцов из высокоэластичных полимеров и других материалов, способных испытывать большие деформации в результате нагрузки, для проведения экспериментов на двухосное растяжение. Сущность: осуществляют выкраивание крестообразного образца из...
Тип: Изобретение
Номер охранного документа: 0002552121
Дата охранного документа: 10.06.2015
Показаны записи 21-30 из 74.
20.12.2013
№216.012.8d15

2-(6-арил-4-ароил-3-метил-1-фенил-1н-пиразоло[3,4-b]пиридин-5-ил)-2-оксо-n-арилацетамиды и способ их получения

Изобретение относится к области органической химии, а именно к соединениям класса пиразоло[3,4-b]пиридина и к способу их получения. Описываются 2-(6-арил-4-ароил-3-метил-1-фенил-1Н-пиразоло[3,4-b]пиридин-5-ил)-2-оксо-N-арилацетамиды формулы где Ar=Ph, СНМе-4; Ar=Ph, СНМе-4, CHBr-4, и способ...
Тип: Изобретение
Номер охранного документа: 0002501800
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.90b2

Способ получения производных бис(5-алкил-2-фурил)(2-азидофенил)метанов

Изобретение относится к области органической химии, конкретно к способу получения производных бис(5-алкил-2-фурил)(2-азидофенил)-метанов общей формулы I, которые могут найти применение в качестве исходных соединений в синтезе индолов, перспективных биологически активных веществ. Способ...
Тип: Изобретение
Номер охранного документа: 0002502735
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90b5

1,6'-диарил-3-ароил-4-гидрокси-1',3'-диметилспиро[пиррол-2,5'-пирроло[2,3-d]пиримидин]-2',4',5(1н,1'н,3'н)-трионы и способ их получения

Изобретение относится к новым соединениям класса спиро[пиррол-2,5'-пирроло[2,3-d] пиримидина, в частности к 1,6'-диарил-3-ароил-4-гидрокси-1',3'-диметилспиро [пиррол-2,5'-пирроло[2,3-d]пиримидин]-2',4',5'(1Н,1Н',3'Н)-трионам, соответствующим структурной формуле указанной ниже, а также к способу...
Тип: Изобретение
Номер охранного документа: 0002502738
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9459

(z)-2-[(3-карбамоил-4,5,6,7-тетрагидробензо[b]тиен-2-ил)амино]-4-(4-r-фенил)-4-оксобут-2-еновые кислоты, обладающие анальгетической активностью

Изобретение относится к области органической химии, а именно к биологически активным веществам, представляющим собой (Z)-2-[(3-карбамоил-4,5,6,7-тетрагидробензо[b]тиен-2-ил)амино]-4-(4-R-фенил)-4-оксобут-2-еновые кислоты общей формулы (1-3). Кислоты (1-3) получают взаимодействием...
Тип: Изобретение
Номер охранного документа: 0002503671
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.945d

7-бензоил-8-гидрокси-6-фенил-9-(3-фенил-2-хиноксалинил)-10н-пиридо[1,2-a]хиноксалин-10-он, проявляющий анальгетическую активность

Изобретение относится к области органической химии, а именно к 7-бензоил-8-гидрокси-6-фенил-9-(3-фенил-2-хиноксалинил)-10-пиридо[1,2-]хиноксалин-10-ону формулы (1) Технический результат: получено новое соединение, которое может найти применение в медицине в качестве лекарственного препарата,...
Тип: Изобретение
Номер охранного документа: 0002503675
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9d38

Способ молекулярно-генетической идентификации популяций древесных видов растений

Изобретение относится к области биохимии, в частности к способу молекулярно-генетической идентификации древесных видов растений, который включает выбор эффективных стабильных молекулярных маркеров, сбор материала, проведение молекулярно-генетического анализа с использованием ПЦР, анализ...
Тип: Изобретение
Номер охранного документа: 0002505956
Дата охранного документа: 10.02.2014
10.03.2014
№216.012.a9bc

Способ определения олова (iv)

Изобретение относится к области аналитической химии, а именно к способам определения ионов олова (IV). Способ определения олова (IV) в водном растворе включает экстракцию ионов олова (IV). При этом экстракцию ведут добавлением в раствор антипирина, сульфосалициловой кислоты и хлорида калия с...
Тип: Изобретение
Номер охранного документа: 0002509167
Дата охранного документа: 10.03.2014
10.06.2014
№216.012.cf1c

Дальнобойное орудие

Изобретение относится к артиллерии. Дальнобойное орудие содержит ствол (1) с казенной частью (2) и боеприпасы с зарядами взрывчатых веществ (3), (4), которые выполнены в виде последовательно расположенных по длине ствола (1) двух или более отдельных камер (5), (6), соединенных со снарядом (7)...
Тип: Изобретение
Номер охранного документа: 0002518791
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d3da

1'-арил-1-бензил-4'-гидрокси-6,6-диметил-3'-циннамоил-6,7-дигидроспиро[индол-3,2'-пиррол]-2,4,5'(1н,1'н,5н)-трионы и 1,1'-диарил-4'-гидрокси-6,6-диметил-3'-циннамоил-6,7-дигидроспиро[индол-3,2'-пиррол]-2,4,5'(1н,1',5н)-трионы, проявляющие анальгетическую активность, и способ их получения

Изобретение относится к способу получения новых 1'-арил-1-бензил-4'-гидрокси-6,6-диметил-3'-циннамоил-6,7-дигидроспироиндол-3,2'-пиррол]-2,4,5'(1Н,1'Н,5Н)-трионов и 1,1'-диарил-4'-гидрокси-6,6-диметил-3'-циннамоил-6,7-дигидроспиро[индол-3,2'-пиррол]-2,4,5'(1Н,1'Н,5Н)-трионов формулы: где Ar...
Тип: Изобретение
Номер охранного документа: 0002520005
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.e1de

Способ контроля взаимного пространственного положения установочных площадок

Способ контроля взаимного пространственного положения установочных площадок заключается в горизонтировании изделия, установке на контролируемые площадки измерительных устройств, каждое из которых содержит два измерительных преобразователя, измеряющие углы отклонения от горизонта по двум взаимно...
Тип: Изобретение
Номер охранного документа: 0002523608
Дата охранного документа: 20.07.2014
+ добавить свой РИД