×
10.06.2014
216.012.cc34

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химико-термической обработки металлов. Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде содержит вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры. Термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон. Установлены математические формулы для определения величины ступеньки и радиусов дисков фазовой зонной пластинки Френеля. Обеспечивается повышение предела выносливости деталей. 2 ил.
Основные результаты: Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде, содержащее вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры, отличающееся тем, что термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ определена по формуле ,где λ - длина волны де Бройля для электрона в газовом разряде, n - показатель преломления окружающей среды, а радиусы дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле ,где - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод, - расстояние от волнового фронта до обрабатываемой детали, m - номер нечетной зоны Френеля.

Устройство относится к электротермическому машиностроению, в частности к вакуумным установкам для нанесения покрытий в разряде. Это изобретение может найти широкое применение в машиностроении, автостроении, химической промышленности.

Известно устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде (RU 2173353 C2, C23C 14/42, 10.09.2001), содержащее вакуумную камеру и подложку для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, положительным - с корпусом камеры, термоэмиссионный электрод, второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, положительным - с корпусом камеры, дополнительный полый цилиндрический электрод, коаксиально расположенный между термоэмиссионным электродом и обрабатываемой деталью, и дополнительный регулируемый источник постоянного напряжения, отрицательный полюс которого соединен с подложкой, а положительный - с дополнительным электродом.

Недостатком данного устройства является относительно большая длительность процесса химико-термической обработки деталей и высокая температура процесса.

Наиболее близким к предлагаемому является устройство для обработки деталей в несамостоятельном тлеющем разряде (RU 2355817 C2, C23C 14/42, C23C 14/48, 20.05.2009), содержащее вакуумную камеру и подложку для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, положительным - с корпусом камеры, термоэмиссионный электрод, второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, положительным - с корпусом камеры, дополнительный полый цилиндрический электрод, коаксиально расположенный между термоэмиссионным электродом и обрабатываемой деталью, и дополнительный регулируемый источник постоянного напряжения, отрицательный полюс которого соединен с подложкой, а положительный - с дополнительным электродом.

Недостатком данного устройства является относительно большая длительность процесса химико-термической обработки деталей и высокая температура процесса.

Задачей настоящего изобретения является сокращение длительности процесса химико-термической обработки деталей и понижение температуры процесса.

Техническим результатом является:

1) повышение предела выносливости деталей за счет понижения температуры химико-термической обработки,

2) понижение энергетических затрат за счет сокращения времени химико-термической обработки.

Технический результат достигается устройством для химико-термической обработки деталей в несамостоятельном тлеющем разряде, содержащем вакуумную камеру и подложку для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, положительным - с корпусом камеры, термоэмиссионный электрод, второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, положительным - с корпусом камеры. Термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ (dim δ=L) определена по формуле

,

где λ - длина волны де Бройля для электрона в газовом разряде (dim λ=L), n - показатель преломления окружающей среды (безразмерная физическая величина), а радиусы rm (dim rm=L) дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле

,

где a 1 - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод (dim a 1=L), a 2 - расстояние от волнового фронта до обрабатываемой детали (dim a 2=L), m - номер нечетной зоны Френеля.

Данное устройство обладает существенным отличием, так как предполагает использование термоэмиссионного электрода, выполненного в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля.

Использование предлагаемого устройства по сравнению с существующими позволяет сократить длительность процесса химико-термической обработки деталей и понизить температуру процесса.

Химико-термическая обработка в разряде, как известно, включает два конкурирующих процесса: катодное распыление поверхности, сопровождающееся образованием в атмосфере рабочего газа химического соединения распыляемого материала, и конденсации, адсорбции (обратное катодное распыление на поверхности образовавшихся соединений, а также ионов газа, сопровождающееся диффузией в матрицу).

Коэффициент катодного распыления существенно зависит от температуры катода, а потому его повышение позволяет снизить температуру химико-термической обработки. А, как известно, чем выше температура химико-термической обработки, тем ниже предел выносливости деталей. Это связано с разупрочнением сердцевины и уменьшением остаточных напряжений сжатия. Повышение интенсивности ионного потока позволяет повысить концентрацию ионов (повысить активность среды), что ведет к интенсификации процесса химико-термической обработки (Арзамасов Б.Н. Химико-термическая обработка металлов в активизированных газовых средах. - М.: Машиностроение, 1979) и сокращению длительности процесса. Кроме того, чем выше концентрация насыщающего элемента на поверхности, тем больше глубина достигаемого диффузионного слоя. Интенсивность характеризуется энергией, переносимой в единицу времени через единичную поверхность. Высокая энергия ионов осаждаемого покрытия очищает поверхность от загрязнений, препятствующих хорошей адгезии, позволяет им внедряться в тонкий поверхностный слой, что увеличивает сцепление за счет лучшего "прорастания пленки в подложку» (Аброян И.А., Андронов А.Н., Титов А.И. Физические основы электронной и ионной технологии: Учеб. Пособие для спец. электронной техники вузов. - М.: Высш. шк., 1984. - С.232, 233).

Важным технологическим приемом повышения качества покрытий является увеличение скорости (энергии) напыляемых частиц, которая способствует ускорению и интенсификации физико-химических процессов в контакте, а следовательно, повышению прочности, плотности и улучшению ряда других характеристик покрытия (В.Н. Анциферов, Г.В. Бобров, Л.К. Дружинин и др. Порошковая металлургия и напыленные покрытия: Учебник для вузов. М: Металлургия, 1987. С.497).

На фиг.1 изображена схема устройства для химико-термической обработки деталей в несамостоятельном тлеющем разряде.

На фиг.2 - термоэмиссионный электрод, выполненный в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ определена по формуле

,

а радиусы дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле

,

где: 1 - вакуумная камера, 2 - термоэмиссионный электрод, выполненный в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля, 3 - обрабатываемая деталь, 4 - подложка для размещения деталей, 5 - источник питания, 6 - источник переменного тока, 7 - второй источник питания, 8 - волновой фронт, огибающий термоэмиссионный электрод, a 1 - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод, a 2 - расстояние от волнового фронта до обрабатываемой детали, n - показатель преломления окружающей среды, - расстояние от внешнего края нечетной зоны Френеля до точки P на обрабатываемой детали, m - номер нечетной зоны Френеля.

Работает устройство следующим образом. В камере (1) создается вакуум (P~100 Па) и запускается рабочий газ для необходимой химико-термической обработки. Включаем источник переменного тока (6) для разогрева термоэмиссионного электрода. После включения источников питания (5) и (7) между термоэмиссионным электродом и обрабатываемой деталью (3), расположенной на расстоянии a 2 от термоэмиссионного электрода, возникает несамостоятельный тлеющий разряд. Разогретый до высокой температуры термоэмиссионный электрод испускает электроны, которым, согласно де Бройлю, присущи волновые свойства (Трофимова Т.П. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.398)

,

где λ - длина волны де Бройля для электрона в газовом разряде, h=6,625·10-34 Дж·с - постоянная Планка, m - масса электрона, v - скорость электрона.

В соответствии с принципом Гюйгенса-Френеля излучение разогретого до высокой температуры термоэмиссионного электрода можно рассматривать как суперпозицию излучений вторичных источников, расположенных на волновом фронте, огибающем термоэмиссионный электрод (Трофимова Т.И. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.331). Вторичные источники излучения когерентны, и в результате суперпозиции на поверхности обрабатываемой детали имеет место дифракция волн. Интенсивность волн, достигающих поверхности обрабатываемой детали, зависит от разности фаз волн, приходящих от соседних зон Френеля. Если оставить открытыми (например) только m четных зон Френеля, то результирующая амплитуда волн в рассматриваемой точке P будет в m раз, а интенсивность - в m2 раз больше, чем при полностью открытом волновом фронте. Такая перекрывающая зонная пластинка называется амплитудной (Трофимова Т.И. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.334). Еще большего эффекта можно достигнуть, не перекрывая четные (или нечетные) зоны Френеля, а изменив их фазу колебаний на π. Такая зонная пластинка называется фазовой. Фазовая пластинка, по сравнению с амплитудной, позволяет еще в 4 раза повысить интенсивность волн. Действие фазовой пластинки аналогично действию собирающей линзы. Интенсивность волн де Бройля в данной точке пространства определяет число электронов, попавших в эту точку (Трофимова Т.И. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.403-404). Изготовив термоэмиссионный электрод в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля, в принципе можно изменить фазу колебаний от соседних зон Френеля на π. Следует отметить, что предлагаемый термоэмиссионный электрод в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля не является известной зонной пластинкой Френеля как таковой, поскольку не предполагается прохождение через термоэмиссионный электрод электромагнитных волн (Волновая оптика. Н.И. Калитеевский. М.: "Наука", Главная редакция физико-математической литературы, 1971. - С.211-212). Повышение интенсивности потока электронов на поверхности обрабатываемой детали (3) позволяет повысить концентрацию ионов (повысить активность среды), что ведет к интенсификации процесса химико-термической обработки, т.е. к сокращению длительности процесса химико-термической обработки. Повышение интенсивности потока электронов на поверхности обрабатываемой детали (3) приводит к увеличению коэффициента катодного распыления. Коэффициент катодного распыления существенно зависит от температуры катода, а потому его повышение позволяет снизить температуру химико-термической обработки.

Предлагаемый термоэмиссионный электрод может быть изготовлен из вольфрама и других тугоплавких материалов, применяемых для термоэлектронной эмиссии. К числу наиболее известных эффективных эмиттеров электронов относятся окислы щелочно-земельных, редкоземельных и др. элементов.

Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде, содержащее вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры, отличающееся тем, что термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ определена по формуле ,где λ - длина волны де Бройля для электрона в газовом разряде, n - показатель преломления окружающей среды, а радиусы дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле ,где - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод, - расстояние от волнового фронта до обрабатываемой детали, m - номер нечетной зоны Френеля.
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
20.03.2015
№216.013.33c6

Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде

Изобретение относится к области химико-термической обработки металлов, в частности к ионному азотированию, и может быть использовано в машиностроении, автостроении и арматуростроении. Устройство для химико-термической обработки детали в несамостоятельном тлеющем разряде содержит вакуумную...
Тип: Изобретение
Номер охранного документа: 0002544729
Дата охранного документа: 20.03.2015
10.08.2016
№216.015.54d3

Устройство для измерения плотности сыпучих тел

Изобретение относится к области измерительной техники, а именно, к пневматическим устройствам для измерения плотности сыпучих материалов, и может быть использовано в различных отраслях промышленности. Устройство для измерения плотности сыпучих тел включает два одинаковых по объему...
Тип: Изобретение
Номер охранного документа: 0002593675
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5eed

Способ азотирования изделия из стали в плазме тлеющего разряда

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и режущего инструмента. Способ азотирования изделия из стали в плазме тлеющего разряда...
Тип: Изобретение
Номер охранного документа: 0002590439
Дата охранного документа: 10.07.2016
Показаны записи 31-40 из 252.
27.11.2013
№216.012.8598

Способ приготовления бурильных промывочных и тампонажных растворов и устройство для его осуществления

Группа изобретений относится к бурению и ремонту нефтяных и газовых скважин, в частности к приготовлению тампонажных, буровых растворов и регулированию их плотности. Способ включает подачу в гидросмеситель струйного типа, соединенный материалопроводом с загрузочной емкостью, сыпучего...
Тип: Изобретение
Номер охранного документа: 0002499878
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.85ae

Способ сборки шатунно-поршневого узла

Изобретение относится к области машиностроения и металлургии, в частности к способу сборки шатунно-поршневого узла. Осуществляют установку поршневого пальца в отверстие поршня и установку шатуна на поршневой палец. Предварительно на поверхность стального поршневого пальца наносят механически...
Тип: Изобретение
Номер охранного документа: 0002499900
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8746

Пресс для изготовления табачных кип

Изобретение относится к прессу для изготовления табачных кип, который включает раму, механизм прессования и две пресс-камеры, причем механизм прессования состоит из двух пресс-плит, каждая из которых закреплена на каретке, входящей в вертикальные направляющие и шарнирно связанной с концом...
Тип: Изобретение
Номер охранного документа: 0002500312
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.878d

Солнцезащитный крем

Изобретение относится к области косметологии и представляет собой солнцезащитный крем, состоящий из водно-спиртового экстракта кожицы винограда, CO-экстракта кожицы винограда, оливкового масла, изопропилмиристата, синтетических первичных высших жирных спиртов фракции C-C, стеарата...
Тип: Изобретение
Номер охранного документа: 0002500383
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.88d3

Холодоаккумулирующий материал

Изобретение относится к холодоаккумулирующему материалу, который может быть использован в термостабилизирующих устройствах в приборостроении и оптоэлектронике; в термоконтейнерах для транспортировки и хранения медицинских, биологических препаратов и пищевых продуктов. Холодоаккумулирующий...
Тип: Изобретение
Номер охранного документа: 0002500709
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8926

Котельное топливо

Изобретение относится к котельному топливу, содержащему тяжелую нефтяную фракцию и стабилизатор, в качестве которого используют отход производства растительных масел - карбоксилат натрия, при следующем соотношении компонентов, % масс.: карбоксилат натрия 20-30 тяжелая нефтяная фракция -...
Тип: Изобретение
Номер охранного документа: 0002500792
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89b8

Преобразователь вращательного движения в возвратно-вращательное

Изобретение относится к области машиностроения, а именно к механизмам преобразования вращательного движения в возвратно-вращательное и наоборот. Преобразователь движения содержит корпус, в котором соосно установлены входной и выходной валы, центральное зубчатое колесо, неподвижно закрепленное...
Тип: Изобретение
Номер охранного документа: 0002500938
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.9110

Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали

Изобретение относится к области машиностроения и металлургии, в частности к вакуумной установке для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали. Упомянутая установка содержит раму с установленной на ней вакуумной камерой, соединенной с...
Тип: Изобретение
Номер охранного документа: 0002502829
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9122

Способ определения несущей способности сваи

Изобретение относится к области инженерных изысканий и предназначено, в частности, для определения несущей способности натуральных свай в фундаменте сооружений. Сущность: непрерывно возрастающую вдавливающую нагрузку на модельную сваю прикладывают с постоянной скоростью, а ее величину...
Тип: Изобретение
Номер охранного документа: 0002502847
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.95a4

Модифицированный интеллектуальный контроллер с нечеткими правилами

Изобретение относится к интеллектуальным контроллерам, использующим принцип обучения с подкреплением и нечеткую логику, и может быть использовано для создания систем управления объектами, работающими в недетерминированной среде. Техническим результатом является повышение адаптационных свойств...
Тип: Изобретение
Номер охранного документа: 0002504002
Дата охранного документа: 10.01.2014
+ добавить свой РИД