×
10.06.2014
216.012.cc34

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химико-термической обработки металлов. Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде содержит вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры. Термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон. Установлены математические формулы для определения величины ступеньки и радиусов дисков фазовой зонной пластинки Френеля. Обеспечивается повышение предела выносливости деталей. 2 ил.
Основные результаты: Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде, содержащее вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры, отличающееся тем, что термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ определена по формуле ,где λ - длина волны де Бройля для электрона в газовом разряде, n - показатель преломления окружающей среды, а радиусы дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле ,где - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод, - расстояние от волнового фронта до обрабатываемой детали, m - номер нечетной зоны Френеля.

Устройство относится к электротермическому машиностроению, в частности к вакуумным установкам для нанесения покрытий в разряде. Это изобретение может найти широкое применение в машиностроении, автостроении, химической промышленности.

Известно устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде (RU 2173353 C2, C23C 14/42, 10.09.2001), содержащее вакуумную камеру и подложку для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, положительным - с корпусом камеры, термоэмиссионный электрод, второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, положительным - с корпусом камеры, дополнительный полый цилиндрический электрод, коаксиально расположенный между термоэмиссионным электродом и обрабатываемой деталью, и дополнительный регулируемый источник постоянного напряжения, отрицательный полюс которого соединен с подложкой, а положительный - с дополнительным электродом.

Недостатком данного устройства является относительно большая длительность процесса химико-термической обработки деталей и высокая температура процесса.

Наиболее близким к предлагаемому является устройство для обработки деталей в несамостоятельном тлеющем разряде (RU 2355817 C2, C23C 14/42, C23C 14/48, 20.05.2009), содержащее вакуумную камеру и подложку для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, положительным - с корпусом камеры, термоэмиссионный электрод, второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, положительным - с корпусом камеры, дополнительный полый цилиндрический электрод, коаксиально расположенный между термоэмиссионным электродом и обрабатываемой деталью, и дополнительный регулируемый источник постоянного напряжения, отрицательный полюс которого соединен с подложкой, а положительный - с дополнительным электродом.

Недостатком данного устройства является относительно большая длительность процесса химико-термической обработки деталей и высокая температура процесса.

Задачей настоящего изобретения является сокращение длительности процесса химико-термической обработки деталей и понижение температуры процесса.

Техническим результатом является:

1) повышение предела выносливости деталей за счет понижения температуры химико-термической обработки,

2) понижение энергетических затрат за счет сокращения времени химико-термической обработки.

Технический результат достигается устройством для химико-термической обработки деталей в несамостоятельном тлеющем разряде, содержащем вакуумную камеру и подложку для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, положительным - с корпусом камеры, термоэмиссионный электрод, второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, положительным - с корпусом камеры. Термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ (dim δ=L) определена по формуле

,

где λ - длина волны де Бройля для электрона в газовом разряде (dim λ=L), n - показатель преломления окружающей среды (безразмерная физическая величина), а радиусы rm (dim rm=L) дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле

,

где a 1 - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод (dim a 1=L), a 2 - расстояние от волнового фронта до обрабатываемой детали (dim a 2=L), m - номер нечетной зоны Френеля.

Данное устройство обладает существенным отличием, так как предполагает использование термоэмиссионного электрода, выполненного в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля.

Использование предлагаемого устройства по сравнению с существующими позволяет сократить длительность процесса химико-термической обработки деталей и понизить температуру процесса.

Химико-термическая обработка в разряде, как известно, включает два конкурирующих процесса: катодное распыление поверхности, сопровождающееся образованием в атмосфере рабочего газа химического соединения распыляемого материала, и конденсации, адсорбции (обратное катодное распыление на поверхности образовавшихся соединений, а также ионов газа, сопровождающееся диффузией в матрицу).

Коэффициент катодного распыления существенно зависит от температуры катода, а потому его повышение позволяет снизить температуру химико-термической обработки. А, как известно, чем выше температура химико-термической обработки, тем ниже предел выносливости деталей. Это связано с разупрочнением сердцевины и уменьшением остаточных напряжений сжатия. Повышение интенсивности ионного потока позволяет повысить концентрацию ионов (повысить активность среды), что ведет к интенсификации процесса химико-термической обработки (Арзамасов Б.Н. Химико-термическая обработка металлов в активизированных газовых средах. - М.: Машиностроение, 1979) и сокращению длительности процесса. Кроме того, чем выше концентрация насыщающего элемента на поверхности, тем больше глубина достигаемого диффузионного слоя. Интенсивность характеризуется энергией, переносимой в единицу времени через единичную поверхность. Высокая энергия ионов осаждаемого покрытия очищает поверхность от загрязнений, препятствующих хорошей адгезии, позволяет им внедряться в тонкий поверхностный слой, что увеличивает сцепление за счет лучшего "прорастания пленки в подложку» (Аброян И.А., Андронов А.Н., Титов А.И. Физические основы электронной и ионной технологии: Учеб. Пособие для спец. электронной техники вузов. - М.: Высш. шк., 1984. - С.232, 233).

Важным технологическим приемом повышения качества покрытий является увеличение скорости (энергии) напыляемых частиц, которая способствует ускорению и интенсификации физико-химических процессов в контакте, а следовательно, повышению прочности, плотности и улучшению ряда других характеристик покрытия (В.Н. Анциферов, Г.В. Бобров, Л.К. Дружинин и др. Порошковая металлургия и напыленные покрытия: Учебник для вузов. М: Металлургия, 1987. С.497).

На фиг.1 изображена схема устройства для химико-термической обработки деталей в несамостоятельном тлеющем разряде.

На фиг.2 - термоэмиссионный электрод, выполненный в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ определена по формуле

,

а радиусы дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле

,

где: 1 - вакуумная камера, 2 - термоэмиссионный электрод, выполненный в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля, 3 - обрабатываемая деталь, 4 - подложка для размещения деталей, 5 - источник питания, 6 - источник переменного тока, 7 - второй источник питания, 8 - волновой фронт, огибающий термоэмиссионный электрод, a 1 - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод, a 2 - расстояние от волнового фронта до обрабатываемой детали, n - показатель преломления окружающей среды, - расстояние от внешнего края нечетной зоны Френеля до точки P на обрабатываемой детали, m - номер нечетной зоны Френеля.

Работает устройство следующим образом. В камере (1) создается вакуум (P~100 Па) и запускается рабочий газ для необходимой химико-термической обработки. Включаем источник переменного тока (6) для разогрева термоэмиссионного электрода. После включения источников питания (5) и (7) между термоэмиссионным электродом и обрабатываемой деталью (3), расположенной на расстоянии a 2 от термоэмиссионного электрода, возникает несамостоятельный тлеющий разряд. Разогретый до высокой температуры термоэмиссионный электрод испускает электроны, которым, согласно де Бройлю, присущи волновые свойства (Трофимова Т.П. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.398)

,

где λ - длина волны де Бройля для электрона в газовом разряде, h=6,625·10-34 Дж·с - постоянная Планка, m - масса электрона, v - скорость электрона.

В соответствии с принципом Гюйгенса-Френеля излучение разогретого до высокой температуры термоэмиссионного электрода можно рассматривать как суперпозицию излучений вторичных источников, расположенных на волновом фронте, огибающем термоэмиссионный электрод (Трофимова Т.И. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.331). Вторичные источники излучения когерентны, и в результате суперпозиции на поверхности обрабатываемой детали имеет место дифракция волн. Интенсивность волн, достигающих поверхности обрабатываемой детали, зависит от разности фаз волн, приходящих от соседних зон Френеля. Если оставить открытыми (например) только m четных зон Френеля, то результирующая амплитуда волн в рассматриваемой точке P будет в m раз, а интенсивность - в m2 раз больше, чем при полностью открытом волновом фронте. Такая перекрывающая зонная пластинка называется амплитудной (Трофимова Т.И. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.334). Еще большего эффекта можно достигнуть, не перекрывая четные (или нечетные) зоны Френеля, а изменив их фазу колебаний на π. Такая зонная пластинка называется фазовой. Фазовая пластинка, по сравнению с амплитудной, позволяет еще в 4 раза повысить интенсивность волн. Действие фазовой пластинки аналогично действию собирающей линзы. Интенсивность волн де Бройля в данной точке пространства определяет число электронов, попавших в эту точку (Трофимова Т.И. Курс физики. Учебное пособие для вузов. - М.: Издательский центр "Академия", 2004. - С.403-404). Изготовив термоэмиссионный электрод в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля, в принципе можно изменить фазу колебаний от соседних зон Френеля на π. Следует отметить, что предлагаемый термоэмиссионный электрод в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля не является известной зонной пластинкой Френеля как таковой, поскольку не предполагается прохождение через термоэмиссионный электрод электромагнитных волн (Волновая оптика. Н.И. Калитеевский. М.: "Наука", Главная редакция физико-математической литературы, 1971. - С.211-212). Повышение интенсивности потока электронов на поверхности обрабатываемой детали (3) позволяет повысить концентрацию ионов (повысить активность среды), что ведет к интенсификации процесса химико-термической обработки, т.е. к сокращению длительности процесса химико-термической обработки. Повышение интенсивности потока электронов на поверхности обрабатываемой детали (3) приводит к увеличению коэффициента катодного распыления. Коэффициент катодного распыления существенно зависит от температуры катода, а потому его повышение позволяет снизить температуру химико-термической обработки.

Предлагаемый термоэмиссионный электрод может быть изготовлен из вольфрама и других тугоплавких материалов, применяемых для термоэлектронной эмиссии. К числу наиболее известных эффективных эмиттеров электронов относятся окислы щелочно-земельных, редкоземельных и др. элементов.

Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде, содержащее вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры, отличающееся тем, что термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон, при этом величина ступеньки δ определена по формуле ,где λ - длина волны де Бройля для электрона в газовом разряде, n - показатель преломления окружающей среды, а радиусы дисков зонной пластинки равны радиусам нечетных внешних зон Френеля и определены по формуле ,где - радиус кривизны волнового фронта, огибающего термоэмиссионный электрод, - расстояние от волнового фронта до обрабатываемой детали, m - номер нечетной зоны Френеля.
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
УСТРОЙСТВО ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ТЛЕЮЩЕМ РАЗРЯДЕ
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
20.03.2015
№216.013.33c6

Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде

Изобретение относится к области химико-термической обработки металлов, в частности к ионному азотированию, и может быть использовано в машиностроении, автостроении и арматуростроении. Устройство для химико-термической обработки детали в несамостоятельном тлеющем разряде содержит вакуумную...
Тип: Изобретение
Номер охранного документа: 0002544729
Дата охранного документа: 20.03.2015
10.08.2016
№216.015.54d3

Устройство для измерения плотности сыпучих тел

Изобретение относится к области измерительной техники, а именно, к пневматическим устройствам для измерения плотности сыпучих материалов, и может быть использовано в различных отраслях промышленности. Устройство для измерения плотности сыпучих тел включает два одинаковых по объему...
Тип: Изобретение
Номер охранного документа: 0002593675
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5eed

Способ азотирования изделия из стали в плазме тлеющего разряда

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и режущего инструмента. Способ азотирования изделия из стали в плазме тлеющего разряда...
Тип: Изобретение
Номер охранного документа: 0002590439
Дата охранного документа: 10.07.2016
Показаны записи 1-10 из 252.
27.01.2013
№216.012.1e91

Крем для ухода за кожей вокруг глаз

Изобретение относится к области косметологии и представляет собой крем для ухода за кожей вокруг глаз, включающий шерстные спирты или ланолин ацетилированный, стеариновую кислоту, стеарат цинка, натриевые соли жирных кислот шерстного жира, триэтаноламин, масло какао, масло минеральное, масло...
Тип: Изобретение
Номер охранного документа: 0002473326
Дата охранного документа: 27.01.2013
27.02.2013
№216.012.2c3f

Установка для испытания образца из материала с памятью формы при сложном напряженном состоянии

Изобретение относится к области испытаний материалов с памятью формы при циклических, тепловых и механических воздействиях. Установка содержит корпус, узел для циклического нагрева и охлаждения образца, верхний и нижний держатели образца, узел осевого нагружения, узел нагружения статическим...
Тип: Изобретение
Номер охранного документа: 0002476854
Дата охранного документа: 27.02.2013
27.04.2013
№216.012.3a6c

Линия получения масла из зародышей кукурузы

Изобретение относится к пищевой промышленности и может быть использовано для производства кукурузного масла из зародышей кукурузы. Линия включает узел подготовки зерна кукурузы к переработке, укомплектованный скальператором, ситовоздушным сепаратором, кампеотборником, увлажнительным аппаратом и...
Тип: Изобретение
Номер охранного документа: 0002480517
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.45ae

Аксиальный каскадный электрический привод с жидкостным токосъемом

Изобретение относится к области электротехники, в частности к аксиальным каскадным электрическим приводам с жидкостным токосъемом, и может быть использовано при создании безредукторных аксиальных каскадных электрических приводов с регулируемой скоростью вращения. Технический результат,...
Тип: Изобретение
Номер охранного документа: 0002483415
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49b6

Инфракрасный детектор для измерения концентрации молекул токсичных газов в воздушном потоке

Изобретение относится к измерительной технике, а именно к количественному газовому анализу токсичных веществ по инфракрасным спектрам поглощения. Детектор содержит светодиод, оптически связанный с измерительным и через поворотное зеркало с опорным каналами, каждый из которых состоит из...
Тип: Изобретение
Номер охранного документа: 0002484450
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c77

Холодоаккумулирующий материал

Изобретение может быть использовано в различных термостабилизирующих устройствах: в приборостроении и оптоэлектронике; в термоконтейнерах для транспортировки медицинских, биологических препаратов; пищевых продуктов. Холодоаккумулирующий материал, содержащий NaCl, KCl и воду, дополнительно...
Тип: Изобретение
Номер охранного документа: 0002485157
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.52a3

Способ производства жировой начинки

Изобретение относится к пищевой промышленности и может быть использовано для приготовления жировой начинки для мучных и сахарных кондитерских изделий. Способ предусматривает смешивание жировой композиции с вкусовым наполнителем с последующим взбиванием и измельчением полученной смеси. В...
Тип: Изобретение
Номер охранного документа: 0002486758
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5326

Средство для ухода за кожей головы и волосами в виде шампуня

Изобретение относится к косметической промышленности и представляет собой средство для ухода за кожей головы и волосами в виде шампуня, содержащее один или несколько поверхностно-активных веществ, стабилизатор пены, консистентную добавку, консервант, стабилизатор pH, целевую добавку для...
Тип: Изобретение
Номер охранного документа: 0002486889
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5336

Средство для лечения мастита у животных

Изобретение относится к области ветеринарии, а именно к средствам для лечения мастита у животных. Средство для лечения мастита у животных содержит антибиотик тилозин, гелеобразующий компонент, воду, причем в качестве гелеобразующего компонента средство содержит карбопол и триэтаноламин,...
Тип: Изобретение
Номер охранного документа: 0002486905
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5368

Способ получения сорбента

Изобретение относится к области сорбционной технологии, в частности к способам получения сорбента для ликвидации разливов нефти и нефтепродуктов. Способ получения сорбента включает измельчение сухих отходов переработки зернового и масличного сырья до размера частиц 2-7 мм, обработку двуокисью...
Тип: Изобретение
Номер охранного документа: 0002486955
Дата охранного документа: 10.07.2013
+ добавить свой РИД