×
20.05.2014
216.012.c637

Результат интеллектуальной деятельности: ВАКУУМНО-ДУГОВОЙ ГЕНЕРАТОР С ЖАЛЮЗИЙНОЙ СИСТЕМОЙ ФИЛЬТРАЦИИ ПЛАЗМЫ ОТ МИКРОЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции. Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц содержит охлаждаемый катод 1 в виде усеченного конуса, поджигающий электрод 3, установленный на конической поверхности катода 1, цилиндрический охлаждаемый анод 4, установленный коаксиально с катодом 1, источник питания 5 вакуумной дуги, включенный между катодом 1 и анодом 4, источник питания 6 поджигающего электрода 3, подключенный отрицательным выходом к катоду 1, осесимметричную жалюзийную систему вставленных друг в друга конических электродов 7, электрически соединенных между собой последовательно и встречно и подключенных к источнику тока 9 и к положительному выводу источника напряжения 8, вторым выводом подключенного к аноду дугового испарителя, над анодом, до жалюзийной системы и после нее установлена, по меньшей мере, одна электромагнитная катушка 10, 11, 12 и перед жалюзийной системой электродов, соосно с ней, установлен дополнительный охлаждаемый анод 13. В центре катода 1 выполнено отверстие в виде встречного, по отношению к внешней поверхности катода, усеченного конуса, а электроды 7 жалюзийной системы выполнены в форме конической многовитковой винтовой линии. В центральной части катода, в плоскости малого диаметра усеченного конуса, установлен диск 2 из тугоплавкого материала. Жалюзийная система выполнена двухэлектродной. Электроды 7 жалюзийной системы и дополнительный анод 13 выполнены так, чтобы не было прямой видимости рабочей поверхности катода, включая его конические поверхности, из любой точки пространства, расположенного за жалюзийной системой. Электроды 7 выполнены с зазорами между соседними витками конической винтовой линии и разной длины. Технический результат - увеличение эффективности прохождения плазмы через жалюзийную систему электродов и ионного тока на выходе. 5 з.п. ф-лы, 1 ил.

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции.

Формирование плазмы вакуумным дуговым разрядом или дуговым разрядом при пониженном давлении различных газов сопровождается появлением микрокапельной фракции и нейтральной атомарной и молекулярной компоненты продуктов эрозии материала катода. Процентное содержание микрокапельной фракции, размеры микрочастиц зависят от материала катода и тока дуги генератора-испарителя и могут изменяться от нескольких процентов для тугоплавких катодов из вольфрама и молибдена, в частности до более чем 50% для легкоплавких материалов, таких как алюминий, цинк и т.п. Наличие микрокапельной фракции в плазменном потоке резко снижает качество осаждаемых покрытий, особенно тонких, толщиной, сравнимой с размерами микрокапель.

Известно устройство для формирования плазмы и ее очистки от микрокапельной и нейтральной фракции [RU 2107968, опубл. 27.03.1998 г.], содержащее охлаждаемый катод в виде усеченного конуса, поджигающий электрод, установленный на конической поверхности катода, коаксиально с катодом установленный цилиндрический охлаждаемый анод, источник питания вакуумной дуги, включенный между катодом и анодом, источник питания поджигающего электрода, подключенный отрицательным выходом к катоду, жалюзийную систему аксиально-симметричных коаксиальных, имеющих коническую форму электродов, установленных по оси дугового испарителя так, что поверхностью электродов полностью перекрывается сечение поперек этой оси. Электроды жалюзийной системы электрически соединены последовательно и встречно и подключены к источнику тока, а между жалюзийной системой и анодом дугового испарителя подключен источник напряжения положительным выводом к жалюзийной системе. Пропускание тока по электродам жалюзийной системы приводит к формированию вокруг них магнитного поля, обеспечивающего замагниченность электронов плазмы, что резко уменьшает ток электронов (отрицательной компоненты плазмы) на жалюзи. Подача положительного потенциала на жалюзийные электроды относительно анода испарителя формирует вблизи их поверхности приэлектродное падение напряжения, электрическое поле которого является отражающим для ионов плазменного потока.

Устройство имеет следующие недостатки. В соседних промежутках между жалюзийными электродами магнитное поле направлено в противоположные стороны. В одном из промежутков магнитное поле жалюзийной системы суммируется с магнитным полем внешних электромагнитных катушек. В соседнем промежутке эти поля вычитаются, что приводит к нарушению условия замагниченности электронов, увеличению электронного тока на жалюзийную систему и, как следствие, к увеличению мощности источника питания и тепловой нагрузки на электроды жалюзийной системы, Уменьшается эффективность прохождения плазмы через жалюзийную систему. Наличие центрального конического электрода приводит к тому, что вся плазма, формируемая на центральной части катода, попадает внутрь конуса и не проходит через зазоры жалюзийной системы. Это существенно снижает эффективность прохождения плазмы через жалюзийную систему и эффективность устройства в целом. Для магнитной изоляции жалюзийных электродов по ним пропускается большой (1000 - 1500 А) ток, что существенно усложняет источник питания, устройство в целом и снижает его надежность.

Известно устройство с более высоким коэффициентом прозрачности жалюзийной системы, выбранное за прототип [RU 2364003]. Устройство для формирования плазмы и ее очистки от микрокапельной и нейтральной фракции содержит охлаждаемый катод в виде усеченного конуса, поджигающий электрод, установленный на конической поверхности катода, коаксиально с катодом установленный цилиндрический охлаждаемый анод, источник питания вакуумной дуги, включенный между катодом и анодом, источник питания поджигающего электрода, подключенный отрицательным выходом к катоду, осесимметричную жалюзийную систему вставленных друг в друга конических электродов, электрически соединенных между собой последовательно и встречно и подключенных к источнику тока и к положительному выводу источника напряжения, вторым выводом подключенного к аноду дугового испарителя, над анодом, до жалюзийной системы и после нее установлена, по меньшей мере, одна электромагнитная катушка. Перед жалюзийной системой электродов соосно с ней расположен охлаждаемый рассекающий элемент, который является дополнительным анодом. Электрод жалюзийной системы набран из параллельно включенных и спаянных между собой изогнутых трубок, подключенных к системе подачи охлаждающего агента.

Устройство-прототип имеет следующие недостатки. В соседних промежутках между жалюзийными электродами магнитное поле направлено в противоположные стороны. В одном из промежутков магнитное поле жалюзийной системы суммируется с магнитным полем внешних электромагнитных катушек. В соседнем промежутке эти поля вычитаются, что приводит к нарушению условия замагниченности электронов, увеличению электронного тока на жалюзийную систему и, как следствие, к увеличению мощности источника питания и тепловой нагрузки на электроды жалюзийной системы. Уменьшается эффективность прохождения плазмы через жалюзийную систему. Наличие перед жалюзийной системой электродов соосно с ней рассекающего элемента приводит к тому, что значительная часть плазмы, формируемой на центральной части катода, не проходит через зазоры жалюзийной системы. Это существенно снижает эффективность прохождения плазмы через жалюзийную систему и эффективность устройства в целом. Для магнитной изоляции жалюзийных электродов по ним пропускается большой (350 А) ток, что усложняет источник питания, устройство в целом и снижает его надежность. Значительное количество жалюзийных электродов (больше двух) приводит к тому, что часть плазмы теряется на торцевых частях жалюзийных электродов, снижая эффективность системы.

Задачей изобретения является создание надежного простого в изготовлении и более эффективного устройства для формирования очищенной от микрочастиц плазмы вакуумной дуги.

Технический результат заключается в увеличении эффективности прохождения плазмы через жалюзийную систему электродов и ионного тока на выходе.

Указанный технический результат достигается тем, что в вакуумно-дуговом генераторе с жалюзийной системой фильтрации плазмы от микрочастиц, содержащем как и прототип охлаждаемый катод в виде усеченного конуса, поджигающий электрод, установленный на конической поверхности катода, коаксиально с катодом установленный цилиндрический охлаждаемый анод, источник питания вакуумной дуги, включенный между катодом и анодом, источник питания поджигающего электрода, подключенный отрицательным выходом к катоду, осесимметричную жалюзийную систему вставленных друг в друга конических электродов, электрически соединенных между собой последовательно и встречно и подключенных к источнику тока и к положительному выводу источника напряжения, вторым выводом подключенного к аноду дугового испарителя, над анодом, до жалюзийной системы и после нее установлена, по меньшей мере, одна электромагнитная катушка и перед жалюзийной системой электродов, соосно с ней, установлен дополнительный охлаждаемый анод, в отличие от прототипа в центре катода выполнено отверстие в виде встречного, по отношению к внешней поверхности катода, усеченного конуса, а электроды жалюзийной системы выполнены в форме конической многовитковой винтовой линии.

В центральной части катода, в плоскости малого диаметра усеченного конуса установлен диск из тугоплавкого материала, препятствующий функционированию катодного пятна и вакуумно-дугового разряда в целом на центральной части катода.

Целесообразно жалюзийную систему выполнить двухэлектродной.

Для увеличения эффективности очистки плазмы от микрочастиц электроды жалюзийной системы и дополнительный анод выполнены так, чтобы не было прямой видимости рабочей поверхности катода, включая его конические поверхности, из любой точки пространства, расположенного за жалюзийной системой.

Целесообразно, чтобы электроды жалюзийной системы выполнить с зазорами между соседними витками конической винтовой линии.

Электроды жалюзийной системы могут быть выполнены разной длины.

На фиг.1 представлен общий вид устройства. Охлаждаемый катод 1 (охлаждение не показано) в виде усеченного конуса установлен по оси устройства. В центральной части катода сделано отверстие в виде обратного, по отношению к внешней поверхности, усеченного конуса. На дне отверстия в плоскости малого диаметра усеченного конуса катода 1 установлен диск 2 из тугоплавкого материала (например, из вольфрама). На внешней боковой поверхности катода 1 установлен поджигающий электрод 3. Коаксиально с катодом 1 установлен цилиндрический охлаждаемый анод 4 (система охлаждения на фиг. не показана). Источник питания 5 вакуумной дуги электрически включен между катодом 1 и анодом 4. Источник питания 6 поджигающего электрода подключен отрицательным выходом к катоду 1, а положительным выходом - к поджигающему электроду 3. Коаксиально с катодом 1 и анодом 4 установлена осесимметричная жалюзийная система вставленных друг в друга двух конических электродов 7. Электроды 7 электрически соединены между собой последовательно и встречно и подключены к положительному выходу источника напряжения 8 и к источнику тока 9. Отрицательный выход источника напряжения 8 подключен к аноду 4. Над анодом 4 коаксиально, до жалюзийной системы, установлены одна или две электромагнитные катушки 10, 11. После жалюзийной системы коаксиально установлена, по крайней мере, одна электромагнитная катушка 12. Перед жалюзийной системой электродов 7 соосно с ней установлен дополнительный охлаждаемый анод 13.

Работает устройство следующим образом. При подаче импульса напряжения от источника 6 на поджигающий электрод 3 происходит электрический пробой между поджигающим электродом 3 и катодом 1. На поверхности катода 1 формируется катодное пятно, являющееся источником плазмы и микрочастиц. Под действием электрического поля между катодом 1 и анодом 4 и магнитного поля электромагнитных катушек 10 и 11 катодное пятно постепенно перемещается с боковой на торцевую поверхность катода 1. В дальнейшем формируемый плазменный поток распространяется вдоль магнитного поля в направлении жалюзийной системы электродов. При прохождении плазменного потока через промежуток между электродами 7 жалюзийной системы микрокапельная фракция и нейтральная компонента осаждаются на поверхностях жалюзийных электродов 7. Основные процессы прохождения заряженных частиц плазмы через жалюзийную систему такие же, как и в прототипе. Ионная компонента плазменного потока под влиянием положительного потенциала жалюзийных электродов 7 отражается от последних. Положительный потенциал на электродах удерживается за счет снижения поперечной проводимости плазмы вследствие замагничивания электронной компоненты магнитным полем, возникающим вблизи электродов 7 в результате суперпозиции магнитных полей от электромагнитных полей катушек 10, 11, 12 и магнитного поля жалюзийных электродов при пропускании по ним электрического тока. После прохождения плазмы через жалюзийную систему электродов 7 за счет осесимметричной геометрии их расположения плазменный поток направлен к оси системы.

В отличие от прототипа в двухэлектродной жалюзийной системе направление магнитного поля во всем зазоре совпадает с направлением поля катушек 10, 11 и 12. В прототипе невозможно согласовать направления магнитных полей из-за двух причин. Во-первых, в соседних промежутках многоэлектродной жалюзийной системы магнитные поля имеют противоположное направление, что не позволяет согласовать их с направлением полей электромагнитных катушек. Во-вторых, в случае согласованного включения электромагнитных катушек 10 и 11 в прототипе приводит к тому, что силовые линии магнитного поля пересекают электроды жалюзийной системы. Это нарушает условие замагниченности плазменных электронов и не позволяет удержать положительный потенциал смещения на электродах. Встречное же включение катушек 10 и 11 в прототипе приводит к появлению поперечного магнитного поля, ухудшающего транспортировку плазмы. Согласование направлений магнитного поля в предлагаемом устройстве обеспечивает хорошую замагниченность электронов плазмы, эффективное отражение ионов от электродов жалюзийной системы и, соответственно, улучшает транспортировку плазмы вдоль оси и увеличивает эффективность прохождения плазмы через жалюзийную систему. Выполнение электродов 7 в форме конической многовитковой винтовой линии обеспечивает пропорциональное количеству витков винтовой линии уменьшение тока источника. Так например, если в прототипе через параллельно соединенные полые трубки пропускался электрический ток 390 А, в случае конструкции электродов в виде винтовой линии с тринадцатью витками, как показано на Фиг. 1, для создания магнитного поля такой же напряженности потребуется источник тока всего на 30 А. Это упрощает конструкцию жалюзийных электродов, источника тока и повышает их надежность.

Наличие в центральной части катода отверстия в виде обратного, по отношению к внешней поверхности, усеченного конуса затрудняет формирование на катоде плазмы, распространение которой вдоль магнитного поля не обеспечивает ее вхождение в зазор жалюзийной системы. Для почти полного исключения вероятности формирования плазмы в центральной части катода на дне отверстия в плоскости малого диаметра усеченного конуса катода установлен диск из тугоплавкого материала. В случае спонтанного перехода дугового разряда на диск он гаснет. Формирование плазмы только на заданной поверхности катода увеличивает эффективность прохождения плазмы через жалюзийную систему электродов.

Для исключения свободного пролета микрочастиц с рабочей поверхности катода через пространство между жалюзийными электродами эти электроды, выполненные в виде винтовой линии, имеют наклон относительно оси так, чтобы не было прямой видимости торцевой поверхности катода из любой точки пространства, расположенного за жалюзийной системой. Дополнительный анод 13 облегчает зажигание дугового разряда и способствует его стабильному горению, одновременно исключая пролет микрочастиц через центральное отверстие жалюзийного электрода.

Поскольку при инициировании дугового разряда, а иногда и в процессе его функционирования, а также по мере выработки катода, катодное пятно может находиться на внешней или внутренней конусных поверхностях катода, то для исключения свободного пролета микрочастиц с любой точки обеих конусных поверхностей катода через жалюзийную систему без столкновения с электродами жалюзийной системы эти электроды и дополнительный анод выполнены так, чтобы не было прямой видимости рабочей поверхности катода, включая его конические поверхности, из любой точки пространства, расположенного за жалюзийной системой. Таким образом, обеспечивается высокое качество очистки плазмы от микрочастиц.

Предложенное устройство с двумя жалюзийными электродами позволяет обеспечить не только согласованное включение всех элементов магнитной системы, но и значительно уменьшить угол наклона по отношению к оси жалюзийных электродов, что увеличивает эффективность прохождения плазмы.

Для исключения межвиткового электрического замыкания в жалюзийных электродах, особенно после продолжительной работы и осаждения покрытия, электроды выполняют с зазорами между соседними витками конической винтовой линии.

В предлагаемом устройстве электроды жалюзийной системы могут быть выполнены как с одинаковой, так и с разной длиной. Выполнение электродов с разной длиной позволяет оптимизировать конструкцию жалюзийных электродов, уменьшая их угол наклона к оси системы и, соответственно, уменьшая угол подлета ионов плазмы вакуумной дуги к жалюзийным электродам.

Пример. Катод выполнен из титана, размеры катода: усеченный конус длиной 4,5 см, диаметр основания 10,4 см, усеченная часть диаметром 9,2 см. В центральной части конуса со стороны малого диаметра имеется конусное углубление глубиной 3 см и диаметром в основании 4,8 см. Диск 2 толщиной 0,3 см и диаметром 4,8 см выполнен из вольфрама. Жалюзийные электроды выполнены из медной водоохлаждаемой трубки диаметром 0,8 см. Оба жалюзийных электрода выполнены в форме конической многовитковой винтовой линии с тринадцатью витками и углом конуса 15°. Длина малого конуса составила14,5 см, а большого 17,5 см. Электромагнитные катушки 10, 11, 12 и электроды жалюзийной системы создают согласованные по направлению магнитные поля вдоль оси генератора. Для создания магнитного поля и замагничивания электронов плазмы по жалюзийным электродам пропускают ток, равный 30 А (в аналоге - 1500 А, а в прототипе 350 А). На жалюзийную систему электродов подают положительный потенциал смещения, равный 15 В. Ток в электромагнитных катушках 10, 11 и 12 составил 0.9 А, 0.5 А, 0,6 А соответственно. Ток вакуумно-дугового разряда был выбран 120 А. Вакуумно-дуговой разряд инициируется при подаче высоковольтного импульса напряжения положительной полярности от источника питания 6 на поджигающий электрод 3. После пробоя на катоде 1 формируется катодное пятно, являющееся источником металлической плазмы. Под влиянием магнитного поля электромагнитных катушек 10, 11 и электрического поля между катодом 1 и анодом 4 катодное пятно постепенно перемещается на торцевую поверхность катода, обращенную в сторону жалюзийной системы. В дальнейшем плазма распространяется вдоль магнитного поля, созданного электромагнитными катушками 10, 11 и 12 и жалюзийными электродами, выполненными в форме конической многовитковой винтовой линии. Ток ионов из плазмы, измеренный на расстоянии 3 см от выхода жалюзийной системы, составил 5 А, что более чем в 2 раза превысило ток на выходе жалюзийной системы прототипа.


ВАКУУМНО-ДУГОВОЙ ГЕНЕРАТОР С ЖАЛЮЗИЙНОЙ СИСТЕМОЙ ФИЛЬТРАЦИИ ПЛАЗМЫ ОТ МИКРОЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 145.
27.08.2014
№216.012.ed3d

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией...
Тип: Изобретение
Номер охранного документа: 0002526552
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eda3

Способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями

Изобретение относится к ионной очистке поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями. Изделия размещают на проводящем держателе, генерируют плазму с импульсно-периодическим ускорением ее ионов путем прохождения плазменного потока...
Тип: Изобретение
Номер охранного документа: 0002526654
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee4a

Способ количественного определения молочной кислоты методом вольтамперометрии на стеклоуглеродном электроде

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека. Задачей заявляемого...
Тип: Изобретение
Номер охранного документа: 0002526821
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eec8

Способ разрушения многокомпонентных изделий

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их...
Тип: Изобретение
Номер охранного документа: 0002526947
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f51f

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002528584
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f523

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной...
Тип: Изобретение
Номер охранного документа: 0002528588
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
Показаны записи 41-50 из 242.
27.09.2013
№216.012.6e63

Цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный...
Тип: Изобретение
Номер охранного документа: 0002493910
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6f30

Способ получения поливинилацетатной дисперсии

Изобретение относится к способу получения поливинилацетатной дисперсии и может быть использовано в химической промышленности. Способ получения поливинилацетатной дисперсии (ПВАД) включает эмульсионную полимеризацию винилацетата, полимеризацию проводят в присутствии водорастворимого радикального...
Тип: Изобретение
Номер охранного документа: 0002494115
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703d

Способ определения платины в водных растворах методом хронопотенциометрии

Изобретение направлено на определение платины в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494384
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703e

Способ определения золота в водных растворах методом хронопотенциометрии

Изобретение направлено на определение золота в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494385
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7086

Устройство для моделирования статического синхронного компенсатора

Изобретение относится к области моделирования объектов электрических систем. Техническим результатом является обеспечение всережимного моделирования в реальном времени и на неограниченном интервале процессов, протекающих в статическом синхронном компенсаторе. Устройство для моделирования...
Тип: Изобретение
Номер охранного документа: 0002494457
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70b8

Материал для поглощения электромагнитных волн

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот. Технический результат - повышение коэффициента поглощения, механической прочности при сохранении низкого коэффициента отражения материала. Для этого материал для...
Тип: Изобретение
Номер охранного документа: 0002494507
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fe

Способ определения оптимальной скорости резания

Способ относится к обработке твердосплавными режущими инструментами группы применяемости К в виде режущих пластин и заключается в том, что сначала проводят измерение температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением...
Тип: Изобретение
Номер охранного документа: 0002494839
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7439

Устройство для разбраковки металлических изделий

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для контроля физико-химических свойств поверхностных слоев металла контролируемого изделия, подвергнутого термической или химикотермической обработке, а также для выявления степени пластической деформации....
Тип: Изобретение
Номер охранного документа: 0002495410
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.743a

Способ определения таллия в водных растворах методом хронопотенциометрии

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения таллия в водных растворах методом хронопотенциометрии заключается том, что таллий (I) переводят в растворе в гидроокисное...
Тип: Изобретение
Номер охранного документа: 0002495411
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.745b

Способ диагностики состояния асинхронного электродвигателя

Изобретение относится к средствам диагностики электрических машин и может быть использовано для контроля состояния асинхронного электродвигателя. Способ диагностики состояния асинхронного электродвигателя включает предварительную фиксацию порогового значения интегральной оценки асинхронного...
Тип: Изобретение
Номер охранного документа: 0002495444
Дата охранного документа: 10.10.2013
+ добавить свой РИД