×
20.05.2014
216.012.c4fc

Результат интеллектуальной деятельности: ВЫСОКОАЗОТИСТАЯ МАРТЕНСИТНАЯ НИКЕЛЕВАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6, кремний 0,1-0,3, железо остальное. Достигается высокое упрочнение стали после закалки от 850°C и отпуска при 500-650°C за счет формирования мелкозернистой структуры азотистого пакетного мартенсита с прослойками остаточного аустенита, обеспечивающей повышение эксплуатационной надежности и долговечности изделий криогенной техники. 3 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области металлургии и является высокопрочной мартенситной сталью с 8,5-10,5% никеля и со сверхравновесным содержанием азота для изготовления высоконагруженных изделий криогенной техники.

Известна мартенситная сталь 07Н9 [О.А.Банных, Ю.К.Ковнеристый. Стали для работы при низких температурах. Москва, Металлургия, 1969, с. 25.], включающая следующие компоненты, мас.%:

углерод 0,07
никель 9,1
марганец 0,2
кремний 0,2
железо остальное

Основным недостатком этой стали является низкая прочность при 20°C (σв=726 МПа, σ0,2=562 МПа) после применяемой при изготовлении изделий нормализации при 900°C и отпуска при 570°C в течение 1 часа. Таким же недостатком обладает 9% никелевая сталь после двойной нормализации при 900 и 790°C и отпуска при 550-585°C (σв=660-690 МПа, σ0,2=420-450 МПа), применяющаяся в США при изготовлении изделий для хранения жидкого кислорода [Gill Е.Т., Swales G.L. Nickel-containing steels for low temperature applications in petroleum industry. Brit. Petrol. Equipment News. 1959, 7, №2, p. 60-64].

Наиболее близкой к заявляемой стали по химическому составу является известная сталь 0Н9 [Ю.П.Солнцев, Б.С.Ермаков, О.И.Слепцов. Энциклопедический справочник. Материалы для низких температур. Санкт-Петербург. Химиздат. 2000, с. 202-204], включающая следующие компоненты по техническим условиям ТУ 14-1-2236-77 (мас.%):

углерод не более 0,1
никель 8,5-10,0
марганец 0,3-0,6
кремний 0,15-0,35
железо остальное

Существенным недостатком данной стали является низкая прочность при 20°C (σв=720 МПа и σ0,2=580 МПа), недостаточная для высоконагруженных изделий.

Задача, на решение которой направлено настоящее изобретение, заключается в разработке низкоуглеродистой с 8,5-10,5% никеля высокоазотистой мартенситной стали для изготовления высоконагруженных изделий криогенной техники. Техническим результатом изобретения является повышение прочности низкоуглеродистой стали с 8,5-10,5% никеля.

Технический результат достигается тем, что никелевая сталь, содержащая углерод, марганец, кремний и железо, согласно изобретению, дополнительно содержит азот и хром при следующем соотношении компонентов (мас.%):

углерод 0,02-0,06
хром 1,5-2,0
никель 8,5-10,5
азот 0,08-0,22
марганец 0,3-0,6
кремний 0,1-0,3
железо остальное

Сущность изобретения заключается во введении в сталь, содержащую 8,5-10,5% никеля, 0,08-0,22% азота для повышения прочности стали и 1,5-2,0% хрома (повышающего растворимость азота) для получения такой стали без пор. В стали с указанным содержанием никеля, азота и хрома в процессе термической обработки формируется структура с большим количеством азотистого мартенсита, необходимого для высокопрочного состояния стали.

Предлагаемая сталь включает компоненты в указанных пределах ввиду того, что содержание азота менее 0,08% и углерода менее 0,02% не обеспечивают достаточной прочности для изготовления высоконагруженных изделий. При концентрациях азота более 0,22% и углерода более 0,06% не удается получить беспористые слитки стали с содержанием 8,5-10,5% никеля. Добавки хрома и марганца, повышающие растворимость азота в расплаве железа, в количествах 1,5-2,0% и 0.3-0,6% соответственно достаточны для кристаллизации жидкого метала стали с 8,5-10,5% никеля без образования в структуре δ-феррита (у которого низкая растворимость азота) и, как следствие, получение слитков без пор. При концентрациях никеля менее 8,5% или более 10,5% формируется структура с большим количеством феррита или аустенита соответственно, снижающих упрочнение стали.

Сталь может характеризоваться тем, что для содержания углерода и азота выполняется следующее условие:

С+N=0,14÷0,24

При суммарном содержании углерода и азота менее 0,14% требуемый уровень прочности стали не достигается из-за присутствия в структуре стали феррита. При значениях этой суммы более 0,24% в структуре нарушается оптимальное соотношение между аустенитной и мартенситной составляющей и уровень прочности будет ниже заданного. В сталях с заданным содержанием углерода и азота (0,14÷0,24) преобладающей структурной составляющей является азотистый мартенсит, обеспечивающий прочностные свойства стали.

Добавки 0,1-0,3% кремния достаточны для раскисления стали. Сталь может содержать кальций в количестве 0,005-0,05%. Кальций является сильным раскислителем. При введении кальция снижается уровень кислорода в металле [Гудремон Э. Специальные стали. М.: Металлургия. 1966. 1275 с.], уменьшается количество неметаллических включений и они приобретают округлую форму. При введении кальция в сталь менее 0,005% значительного снижения уровня неметаллических включений не наблюдается. При введении кальция в сталь в количестве более 0,05% неметаллические включения значительно укрупняются и, являясь концентраторами напряжений, снижают пластические свойства стали.

Сталь может содержать церий в количестве 0,005-0,03%. Церий, как и кальций, является активным раскислителем, его введение приводит к уменьшению количества неметаллических включений в металле, а также измельчению кристаллической структуры [Гудремон Э. Специальные стали. М.: Металлургия. 1966. 1275 с.]. При увеличении содержания церия более 0,03% возможно образование нитридов церия уже в жидкой фазе, которые, укрупняясь и всплывая, будут ассимилированы шлаком, выводя тем самым азот из металла.

Сталь выплавляли в Институте металловедения им. академика А.Балевского Болгарской академии наук в установке для литья под давлением 30-40 атм азота.

В таблице 1 представлен химический состав стали, содержание азота в которой 0,08-0,22%, т.е. в 3-5 раз выше равновесной (при выплавке при атмосферном давлении). Такое пересыщение азота в твердом растворе приводит к значительному упрочнению стали. 10 кг слитки ковали в интервале температур 1100-850°C на прутки сечением 14×14 мм. Термическую обработку стали производили по режиму, состоящему из закалки от 850°C (1 час) с охлаждением в воде и последующего отпуска при 500-650°C (1 час) с охлаждением на воздухе.

Методами оптической микроскопии (на микроскопе Olympus) и тонких фольг «на просвет» (на электронном микроскопе ЭМВ-100Л) исследована структура стали после закалки от 850°C и закалки от 850°C с последующим нагревом при 500-650°C в течение 1 часа.

Механические испытания на растяжение проводили на машине Инстрон-1185 со скоростью растяжения 1 мм/мин на стандартных цилиндрических образцах с диаметром рабочей части 5 мм. Для испытаний на ударную вязкость использовали стандартные образцы Менаже с U-образным надрезом при температурах +20 и -196°C на копре Zwick/Roell RKP 450 с записью диаграммы деформирования.

Предлагаемая сталь после закалки от 850°C и отпуска при 500-650°C в течение 1 часа значительно превосходит по уровню прочности применяющуюся в криогенной технике сталь 0Н9. В таблице 2 представлены механические свойства известной и предлагаемой стали. После закалки от 850°C и отпуска при 500°C в течение 1 час заявляемая сталь имеет максимальные значения прочности (σв=1021 и 1147 МПа, σ0,2=950 и 1069 МПа) при повышенной пластичности и ударной вязкости (таблица 2). Такое сочетание прочности и пластичности у этой стали достигается в результате формирования после указанных режимов термической обработки мелкозернистой (~20 мкм) структуры азотистого пакетного мартенсита с прослойками между рейками мартенсита остаточного аустенита, приведенной на рис.1 (сталь плавки 3 после закалки от 850°C - 1 час - вода и отпуска 600°C - 1 час - воздух: а - вид структуры×10000; б - темнопольное изображение в рефл.022γ).

Сталь, таким образом, может быть использована в качестве высокопрочного конструкционного материала. Указанные в таблице 2 механические свойства предлагаемой стали подтверждают ее перспективность для замены применяющейся в криогенной технике стали 0Н9.

Таблица 1
Сталь №пл. С N Ni Мn Cr Si Са Се
Известная 0Н9 1 <0,15 - 9,5 0,50 - 0,25 - -
Предлагаемая 2 0,02 0,08 8,5 0,30 1,5 0,18 0,005 0,005
3 0,06 0,22 10,5 0,59 2,0 0,27 0,050 0,030
4 0,01 0,07 7,9 0,20 0,9 0,19 0,004 0,022
5 0,08 0,25 11,2 0,50 2,5 0,41 0,060 0,040
*- стали пл. 4 и 5, химический состав которых выходит за пределы состава предлагаемой стали, сталь пл. 5 с порами.

Таблица 2
Сталь №пл. Термическая обработка σв, МПа σ0,2, МПа δ, % ψ, % KCU*, МДж/м2
Известная 0Н9 1 Нормализация от 900 и 790°C+500°C - 2,5 час 720 580 30,0 76 3,0/1,3
Закалка 790°C+580°C 590 430 26,0 71 2,9/0,4
Предлагаемая 2 Закалка 850°C+500°C - 1 час 1021 950 27,1 63 1,45/0,85
3 Закалка 850°C+500°C - 1 час 1147 1069 13,5 55 1,30/0,80
Закалка 850°C+550°C - 1 час 911 873 15,0 63 1,50/1,00
Закалка 850°C+600°C - 1 час 871 672 19,0 68 1,60/1,14
Закалка 850°C+650°C - 1 час 1058 912 11,0 63 1,04/0,72
4 Закалка 850°C+500°C - 1 час 852 673 25,0 66 2,70/2,10
KCU*-в числителе при 20°C, в знаменателе при - 196°C


ВЫСОКОАЗОТИСТАЯ МАРТЕНСИТНАЯ НИКЕЛЕВАЯ СТАЛЬ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 114.
25.08.2017
№217.015.a359

Способ получения порошкового магнитотвёрдого сплава 30х20к2м2в системы железо-хром-кобальт

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание,...
Тип: Изобретение
Номер охранного документа: 0002607074
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4f2

Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания...
Тип: Изобретение
Номер охранного документа: 0002607743
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a8e2

Резорбируемый пористый кальцийфосфатный цемент

Изобретение относится к фармацевтической промышленности, а именно к резорбируемому пористому кальцийфосфатному цементу для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальцийфосфатный цемент состоит из смеси порошков фосфатов кальция, а именно из железо- или...
Тип: Изобретение
Номер охранного документа: 0002611345
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b601

Способ получения листового композиционного материала системы титан-алюминий

Изобретение может быть использовано при получении листового композиционного материала системы титан-алюминий для изготовления деталей летательных аппаратов, в том числе подвергаемых повышенным тепловым нагрузкам. Способ включает получение слоистой заготовки в виде пакета и последующую ее...
Тип: Изобретение
Номер охранного документа: 0002614511
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b688

Способ получения наноразмерных порошков элементов и их неорганических соединений и устройство для его осуществления

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток...
Тип: Изобретение
Номер охранного документа: 0002614714
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.bc5d

Способ получения карбидов элементов и композиций элемент-углерод

Изобретение относится к порошковой металлургии. Описан способ получения нанопорошков систем металл-углерод, состоящих из карбидов металлов и композиций металл-углерод, из хлоридных и оксидных соединений металлов и углеводородов в термической плазме электрических разрядов, в котором процесс...
Тип: Изобретение
Номер охранного документа: 0002616058
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bf42

Высокопрочная низколегированная конструкционная сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных конструкционных сталей, используемых в оборудовании для холодной обработки давлением, в конструкциях летательных аппаратов, в транспортном, горнодобывающем и дорожно-строительном машиностроении, в деталях и...
Тип: Изобретение
Номер охранного документа: 0002617070
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.bfaf

Литейный магниевый сплав с редкоземельными металлами

Изобретение относится к области металлургии, а именно к магниевым сплавам, содержащим редкоземельные металлы, и может быть использовано в машиностроении, авиастроении и ракетной технике в качестве легкого высокопрочного конструкционного материала для изготовления различных деталей, особенно...
Тип: Изобретение
Номер охранного документа: 0002617072
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c5f4

Способ получения корундовой керамики, содержащей металлический никель

Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др. Способ получения корундовой...
Тип: Изобретение
Номер охранного документа: 0002618768
Дата охранного документа: 11.05.2017
Показаны записи 41-50 из 72.
25.08.2017
№217.015.a359

Способ получения порошкового магнитотвёрдого сплава 30х20к2м2в системы железо-хром-кобальт

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание,...
Тип: Изобретение
Номер охранного документа: 0002607074
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4f2

Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания...
Тип: Изобретение
Номер охранного документа: 0002607743
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a8e2

Резорбируемый пористый кальцийфосфатный цемент

Изобретение относится к фармацевтической промышленности, а именно к резорбируемому пористому кальцийфосфатному цементу для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальцийфосфатный цемент состоит из смеси порошков фосфатов кальция, а именно из железо- или...
Тип: Изобретение
Номер охранного документа: 0002611345
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b601

Способ получения листового композиционного материала системы титан-алюминий

Изобретение может быть использовано при получении листового композиционного материала системы титан-алюминий для изготовления деталей летательных аппаратов, в том числе подвергаемых повышенным тепловым нагрузкам. Способ включает получение слоистой заготовки в виде пакета и последующую ее...
Тип: Изобретение
Номер охранного документа: 0002614511
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b688

Способ получения наноразмерных порошков элементов и их неорганических соединений и устройство для его осуществления

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток...
Тип: Изобретение
Номер охранного документа: 0002614714
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.bc5d

Способ получения карбидов элементов и композиций элемент-углерод

Изобретение относится к порошковой металлургии. Описан способ получения нанопорошков систем металл-углерод, состоящих из карбидов металлов и композиций металл-углерод, из хлоридных и оксидных соединений металлов и углеводородов в термической плазме электрических разрядов, в котором процесс...
Тип: Изобретение
Номер охранного документа: 0002616058
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bf42

Высокопрочная низколегированная конструкционная сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных конструкционных сталей, используемых в оборудовании для холодной обработки давлением, в конструкциях летательных аппаратов, в транспортном, горнодобывающем и дорожно-строительном машиностроении, в деталях и...
Тип: Изобретение
Номер охранного документа: 0002617070
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.bfaf

Литейный магниевый сплав с редкоземельными металлами

Изобретение относится к области металлургии, а именно к магниевым сплавам, содержащим редкоземельные металлы, и может быть использовано в машиностроении, авиастроении и ракетной технике в качестве легкого высокопрочного конструкционного материала для изготовления различных деталей, особенно...
Тип: Изобретение
Номер охранного документа: 0002617072
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c5f4

Способ получения корундовой керамики, содержащей металлический никель

Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др. Способ получения корундовой...
Тип: Изобретение
Номер охранного документа: 0002618768
Дата охранного документа: 11.05.2017
+ добавить свой РИД