×
10.05.2014
216.012.c27e

Результат интеллектуальной деятельности: СПОСОБ МОДИФИКАЦИИ ИОНОСФЕРНОЙ ПЛАЗМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электричества, касается способа модификации ионосферной плазмы, который может быть использован для исследования околоземного пространства, задач дальней НЧ радиосвязи, а также в целях радиопротиводействия. Способ модификации ионосферной плазмы включает формирование искусственных плазменных образований за счет ударных волн, расходящихся от мест взрывов отдельных пиропатронов Отстрел пиропатронов производят от кассеты по радиальным направлениям, формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов, при этом плазменное образование с возбужденными в нем импульсными электромагнитными полями формируют в центральной области воздействия за счет сходящейся ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов. Технический результат - увеличение мощности импульсных электромагнитных полей, повышение эффективности исследований околоземного пространства, НЧ радиосвязи и радиопротиводействия. 4 з.п. ф-лы, 3 ил., 1 табл.

Предлагаемое изобретение относится к области электричества, касается способа модификации ионосферной плазмы, который может быть использован для исследования околоземного пространства, задач дальней НЧ радиосвязи, а также в целях радиопротиводействия.

Известен способ модификации локальных параметров ионосферной плазмы путем формирования искусственного плазменного образования (ИПО), осуществляемого периодическим возбуждением и самофокусировкой плазменных волн, зажигающих высокочастотный разряд (ВЧ) в ионосферной плазме. Способ заключается в периодическом формировании искусственного плазменного образования с частотой полезного низкочастотного (НЧ) сигнала. ИПО формировалось при зажигании в ионосфере ВЧ разряда полем пучка интенсивных плазменных волн, инжектируемых с борта летательного аппарата (метеоракеты) малогабаритной антенной плазменных волн и модулированных по амплитуде на частоте полезного НЧ сигнала. Данный способ позволил получить изменение плотности плазмы более чем в 10 раз, а также потоки частиц с энергией ~3 кэВ с возросшей более чем в три раза плотностью при мощности генератора накачки W≈1 кВт. Однако применение такого способа воздействия, с одной стороны, требует определенного аппаратурного обеспечения, и, с другой стороны, невозможно во внешней ионосфере, где плотность ионосферной плазмы недостаточна для зажигания ВЧ разряда.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ модификации параметров ионосферной плазмы, защищенный патентом на изобретение RU 1702856 С1, опубл. 30.04.1994 г., кл. Н05Н 1/00, принятый за ближайший аналог (прототип).

Способ, по прототипу, включает формирование искусственного плазменного образования высокочастотным разрядом в поле бортового высокочастотного источника. Одновременно с высокочастотным разрядом формируют расходящиеся акустические ударные волны путем создания в области высокочастотного разряда временной серии взрывов одиночных пиропатронов. За счет увеличения энерговклада в искусственное плазменное образование увеличиваются размеры области модификации, глубины и скорости модуляции параметров плазмы.

Преимуществом и общим признаком с предлагаемым изобретением является формирования расходящихся ударных волн путем взрывов пиропатронов, что приводит к перераспределению ионосферной плазмы и формированию искусственных плазменых образований.

Однако способ по прототипу в принципе не направлен на возбуждение импульсных электромагнитных полей, а только реализует, фактически, разнос области ВЧ разряда взрывом пиропатрона, увеличивая тем самым размеры области модифицированной плазмы. Магнитное поле на фронте ударной волны в данном способе увеличивается всего на величину порядка фонового значения геомагнитного поля, а вихревое электрическое поле, генерируемое изменением магнитного поля, не превышает 1 В/м для типичных параметров воздействия. Кроме того, принципиальная необходимость зажигания ВЧ разряда делает невозможным использование данного метода во внешней ионосфере и/или в магнитосфере Земли, поскольку ВЧ разряд сложно реализовать на высотах более 200 км из-за малой плотности фоновой среды.

В задачу изобретения положено создание искусственных плазменных образований и генерация импульсных электромагнитных полей.

Технический результат от использования предлагаемого изобретения заключается в увеличении мощности импульсных электромагнитных полей, повышении эффективности исследований околоземного пространства, НЧ радиосвязи и радиопротиводействия.

Поставленная задача достигается тем, что в способе модификации ионосферной плазмы, включающем формирование искусственных плазменных образований за счет ударных волн, расходящихся от мест взрывов отдельных пиропатронов отстрел пиропатронов производят от кассеты по радиальным направлениям, формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов, при этом плазменное образование с возбужденными в нем импульсными электромагнитными полями формируют в центральной области воздействия за счет сходящейся ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов; отстрел пиропатронов производят от кассеты по радиальным направлениям в плоскости, ортогональной к геомагнитному полю, формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов, расположенных к моменту взрыва по кольцу, при этом плазменное образование цилиндрической формы с возбужденными в нем импульсными электромагнитными полями формируют в приосевой области кольца за счет сходящейся квазицилиндрической ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов; взрыв пиропатронов осуществляют на нескольких соосных кольцах; отстрел пиропатронов производят от кассеты по радиальным направлениям, обладающим сферической симметрией, формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов, расположенных к моменту взрыва по сфере, при этом плазменное образование сферической формы с возбужденными в нем импульсными электромагнитными полями формируют в центральной области сферы за счет сходящейся квазисферической ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов; взрывное воздействие, приводящее к одновременному формированию нескольких расходящихся ударных волн, смыкающихся, вследствие особой геометрии воздействия, в сходящуюся ударную волну, осуществляют в верхней ионосфере Земли (на высотах 300-700 км от поверхности Земли).

На фиг.1 изображена геометрия воздействия точечных взрывов, расположенных по кольцу, где: а - оси координат, б - схематичное изображение сходящейся ударной волна при взрыве восьми пиропатронов, расположенных по кольцу радиуса r0.

На фиг.2 изображена геометрия воздействия шести точечных взрывов, расположенных по сфере радиуса R0, до момента смыкания фронтов от отдельных взрывов.

На фиг.3 показана структура азимутальной компоненты возмущенного геомагнитного поля от отдельного точечного взрыва.

На фиг.4 приведена таблица 1, показывающая зависимость достижимых величин давления, магнитного и электрического полей в искусственном плазменном образовании от параметров воздействия.

Способ модификации ионосферной плазмы включает формирование искусственных плазменных образований за счет ударных волн, расходящихся от мест взрывов отдельных пиропатронов.

Отстрел пиропатронов производят от кассеты по радиальным направлениям.

Формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов.

Плазменное образование с возбужденными в нем импульсными электромагнитными полями формируют в центральной области воздействия за счет сходящейся ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов.

Отстрел пиропатронов могут производить, например, от кассеты по радиальным направлениям в плоскости, ортогональной к геомагнитному полю, при этом формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов, расположенных к моменту взрыва по кольцу, а плазменное образование цилиндрической формы с возбужденными в нем импульсными электромагнитными полями формируют в приосевой области кольца за счет сходящейся квазицилиндрической ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов.

Взрыв пиропатронов могут осуществлять на нескольких соосных кольцах.

Отстрел пиропатронов могут производить, например, от кассеты по радиальным направлениям, обладающим сферической симметрией, при этом формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов, расположенных к моменту взрыва по сфере, а плазменное образование сферической формы с возбужденными в нем импульсными электромагнитными полями формируют в центральной области сферы за счет сходящейся квазисферической ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов.

Взрывное воздействие, приводящее к одновременному формированию нескольких расходящихся ударных волн, смыкающихся, вследствие особой геометрии воздействия, в сходящуюся ударную волну, осуществляют в верхней ионосфере Земли (на высотах 300-700 км от поверхности Земли).

Предлагаемый способ модификации ионосферной плазмы осуществляют следующим образом.

С Земли или с летательного аппарата производят запуск кассеты с пиропатронами. После выхода кассеты в заданную точку ионосферы Земли, например на высотах 300-700 км от поверхности Земли, производят отстрел нескольких пиропатронов по радиальным направлениям и в определенный момент времени осуществляют одновременный взрыв всех пиропатронов.

Отстрел пиропатронов могут осуществлять по кольцу с радиусом r0, плоскость которого ортогональна к геомагнитному полю, или по сфере с радиусом R0.

Конструктивно разлет пиропатронов от кассеты по радиальным направлениям реализуют, например, с помощью закрепленных на кассете радиальных направляющих для разлета отдельных пиропатронов.

Рассмотрим более подробно случай цилиндрической симметрии, когда места взрывов отдельных пиропатронов расположены по кольцу. Вариант сферической симметрии взрывов качественно рассматривается аналогично простой заменой цилиндрической симметрии на сферическую симметрию.

От мест взрывов отдельных пиропатронов, расположенных по кольцу радиуса r0, распространяются ударные волны, фронты которых в некоторый момент времени смыкаются и формируют как расходящийся от кольца, так и сходящийся к оси кольца объединенный фронт ударных волн (см. фиг.1). Важно отметить, что на величину радиуса кольца r0, на котором осуществляется воздействие, на число и энергию взрывов, т.е. фактически на максимальный радиус фронта отдельной ударной волны, накладываются условия, чтобы к моменту смыкания фронтов отдельных ударных волн в объединенный фронт, ударные волны отвечали определенным требованиям, которые будут сформулированы ниже, исходя из физических условий реализации необходимых эффектов.

В результате формирования объединенного фронта сходящейся ударной волны в приосевой области кольца за счет эффекта кумуляции имеет место значительный рост гидродинамических параметров - плотности, давления, температуры плазмы. Если скорость фронта сходящейся ударной волны достаточно велика (это первое из требований на параметры воздействия), магнитное поле движется вместе с частицами плазмы за счет, так называемого, эффекта «вмороженности» магнитного поля в плазму и существенно возрастает в центре кольца. В свою очередь, быстрое изменение магнитного поля в центральной области кольца приводит к генерации сильного вихревого электрического поля.

Для оценок можно воспользоваться теорией точечного взрыва для описания ударных волн на начальном этапе, до тех пор, пока фронты от отдельных взрывов не сомкнутся. Как известно, плазма выносится из области взрыва, при этом гидродинамические характеристики плазмы на фронте ударной волны и скорость фронта определяются теорией сильного (в пренебрежении противодавлением) точечного взрыва [Коробейников В.П. Задачи теории точечного взрыва. - М.: Наука, 1985, 186 с.] следующим образом

где pфр - давление на фронте ударной волны, Vфр и rфр - скорость и радиус фронта, W - энерговклад взрыва, ρ0 - плотность фоновой среды, γ - показатель адиабаты, α и β - безразмерные коэффициенты, учитывающие влияние теплопроводности (для воздуха γ=1,4, α=0,5, β=0,8). Выполнение условия сильной ударной волны к моменту смыкания фронтов отдельных ударных волн является вторым требованием, накладываемым на условия воздействия.

Магнитное поле, при выполнении условия Vфp>>c2-1)mах/4π rфр (σ - тензор проводимости), согласно эффекту «вмороженности», выносится из области взрыва. На фиг.2 показана полученная авторами [Курина Л.Е., Марков Г.А. Взрывное воздействие на резонансный радиоразряд в ионосфере Земли. // Геомагнетизм и Аэрономия, 2006, Т.46, №6, с.778] структура азимутальной компоненты возмущенного магнитного поля внутри области, ограниченной фронтом ударной волны. Как показывают расчеты, скачок азимутальной компоненты магнитного поля на фронте ударной волны равен

где Н0 - фоновое геомагнитное поле. Для воздуха ΔHθ≈2Н0.

Скачок азимутальной компоненты, как известно, приводит к генерации вихревого электрического тока с линейной плотностью

.

Такое рассмотрение справедливо, пока фронты ударных волн от отдельных взрывов не сомкнутся, что произойдет, когда радиус фронта отдельного взрыва достигнет величины

,

где N - число пиропатронов на кольце радиуса r0.

После объединения фронтов для ориентировочных оценок можно воспользоваться теорией сходящихся ударных волн. Исходя из очевидных требований закона сохранения энергии, рост характеристик плазмы на фронте сильной сходящейся ударной волны определяется выражением [Честер У. Проблемы механики. Вып.4. / Пер.с англ. Под ред. Х.Дрейдена., Т. Кармана. -М.: ИЛ, 1963, с.118]~

где А - величина характеристики, S - уменьшающаяся площадь фронта сходящейся ударной волны. Для ионосферы закон кумулятивного роста приводит к соотношению для случая цилиндрического фронта сходящейся ударной волны и к для случая сферического фронта сходящейся ударной волны (здесь rсх - радиус фронта сходящейся ударной волны, отсчитываемый от оси, см. Фиг.1). Отсюда следует, что в случае сферической симметрии взрывного воздействия имеет место гораздо более быстрый рост давления и электромагнитных полей, что представляет больший интерес для целей радиопротиводействия. Случай цилиндрической симметрии воздействия представляет интерес для целей формирования плазменного волновода, вытянутого вдоль геомагнитного поля, и возбуждения в нем импульсных электромагнитных полей для направленной передачи электромагнитного излучения.

Для получения численных оценок вернемся к случаю цилиндрической симметрии. В результате объединения фронтов от отдельных взрывов, поверхностный ток, текущий по сходящемуся квазицилиндрическому фронту ударной волны, создает возрастающее магнитное поле Нz, которое в приосевой области можно оценить в соответствии с

законом кумулятивного роста (2).

Заметим, что вклад тока, текущего по внешнему расходящемуся объединенному фронту ударной волны, в величину магнитного поля в центре можно не учитывать в случае, если радиус кольца много больше радиуса сходящейся ударной волны (r0>>rсх), что заведомо выполняется по условиям воздействия.

Быстро возрастающее магнитное поле в центральной области кольца, в свою очередь, генерирует индукционное вихревое электрическое поле, которое можно оценить известным образом

.

В результате вышеописанного воздействия на ионосферную плазму на оси кольца формируется область модифицированных характеристик плазмы с характерным поперечным к геомагнитному полю размером, порядка радиуса сходящейся ударной волны l~rсх, и продольным размером, порядка радиуса фронта расходящейся ударной волны от отдельного взрыва l||~rфр (см. Фиг.1). При этом в области модификации возбуждаются импульсные поля Нz, и Еφ значительной интенсивности. При очевидном требовании rcx<<rфр область модификации имеет цилиндрическую форму, вытянутую вдоль направления геомагнитного поля. Таким образом формируется плазменный волновод, вдоль которого могут распространяться электромагниные волны, несущие полезный сигнал.

Для увеличения продольного размера такого волновода разумно осуществлять взрывное воздействие на нескольких паралллельных соосных кольцах, при этом достигается кратное увеличение продольного размера области модификации, т.е. фактически длины плазменного волновода.

В таблице 1 приведены численные оценки достижимых величин давления, магнитного и электрического полей в приосевой области кольца, рассчитанные для двух высот воздействия h, равных 300 и 500 км. Для расчетов параметры воздействия были выбраны следующими: 8 или 16 пиропатронов, массой по 10 грамм каждый, что эквивалентно энергии отдельного взрыва W~40 кДж, взрывались в момент разлета на кольцо, радиус которого принимал различные значения r0.

Важно отметить, что значения радиуса кольца r0, на которых осуществлялось воздействие, число пиропатронов и их масса выбирались таким образом, чтобы удовлетворялись два требования на параметры воздействия:

1) ударные волны от отдельных взрывов к моменту смыкания фронтов оставались сильными, т.е. для расчетов были справедливы соотношения (1);

2) скорости фронтов от отдельных взрывов к моменту смыкания фронтов были достаточно велики, чтобы выполнялось условие «вмороженности» магнитного поля в плазму.

Для численных оценок разумно ограничить поперечный размер области схождения ударной волны до нескольких метров, пока еще с большим запасом можно пренебречь дисипативными эффектами. Оценки приведены для значений радиуса схождения цилиндрической ударной волны rсх=1 м и 10 м.

Изобретение может иметь следующее практическое применение:

Формирование на высотах внешней ионосферы Земли искусственного плазменного образования волноводного типа и возбуждение в нем импульсных электромагнитных полей значительной интенсивности, реализует техническую возможность направленной передачи электромагнитной энергии, в том числе для задач дальней НЧ радиосвязи, а также повышает эффективность исследований магнитосферы Земли, создавая эффективный источник электромагнитного излучения.

Возбуждение импульсных электромагнитных полей высокой интенсивности в верхних слоях ионосферы позволяет, в целях радиопротиводействия, нарушить штатную работу электронной аппаратуры, оказавшейся в центральной области взрывного воздействия, обладающего сферической симметрией.


СПОСОБ МОДИФИКАЦИИ ИОНОСФЕРНОЙ ПЛАЗМЫ
СПОСОБ МОДИФИКАЦИИ ИОНОСФЕРНОЙ ПЛАЗМЫ
СПОСОБ МОДИФИКАЦИИ ИОНОСФЕРНОЙ ПЛАЗМЫ
СПОСОБ МОДИФИКАЦИИ ИОНОСФЕРНОЙ ПЛАЗМЫ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 20.
20.10.2014
№216.013.0033

Способ определения стресса

Изобретение относится к области медицины, а именно к диагностике и физиологии. Выполняют регистрацию значений R-R интервалов сердечного ритма и обработку полученной последовательности R-R интервалов. Длительность последовательности R-R интервалов выбирают не менее чем 300 сек. После чего...
Тип: Изобретение
Номер охранного документа: 0002531443
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.0516

Способ изготовления высокоответственных изделий из трехкомпонентного титанового сплава

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении изделий из трехкомпонентного сплава на основе титана, содержащего алюминий в количестве 2-6 вес.% и ванадий или цирконий в количестве не более 4 вес.%. Производят равноканальное угловое...
Тип: Изобретение
Номер охранного документа: 0002532700
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0e8d

Способ определения аполипопротеина а1 и аполипопротеина в сыворотки крови

Изобретение относится к медицине, а именно к лабораторной диагностике, и может применяться для определения аполипопротеина А1 и аполипопротеина В сыворотки крови с целью выявления факторов риска атеросклероза коронарных артерий при скрининге у населения. Способ включает пропускание ультразвука...
Тип: Изобретение
Номер охранного документа: 0002535142
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1333

Способ создания плазменной антенны

Изобретение относится к антенной технике и может быть использовано для исследования магнитосферы Земли и для задач дальней НЧ радиосвязи. Технический результат - повышение мощности НЧ источника электромагнитного излучения, улучшение качества НЧ радиосвязи. Для этого осуществляют формирование...
Тип: Изобретение
Номер охранного документа: 0002536338
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.16cf

Способ скрининга и мониторинга онкологических заболеваний и набор для его осуществления (варианты)

Группа изобретений относится к области биохимии. Заявлены варианты способа скрининга и мониторинга онкологических заболеваний, включающего забор образца ткани, выделение из образца ткани РНК, синтез кДНК, амплификацию методом множественной обратной транскрипции полимеразой цепной реакции с...
Тип: Изобретение
Номер охранного документа: 0002537263
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1d82

Производное n-(1s)-1',2',3'-триметокси-6,7-дигидро-1н-бензо[5',6':5,4]циклогепта-[3,2-f]бензофуран-1-ил)ацетамида и его применение

Данное изобретение относится к новым гетероциклическим соединениям, содержащим пятичленные кольца, конденсированные с другими ядрами, только с одним атомом кислорода в качестве гетероатома, а именно к производным...
Тип: Изобретение
Номер охранного документа: 0002538982
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.23e3

Способ получения железоокисных пигментов

Изобретение может быть использовано в производстве декоративных строительных материалов. Способ получения железоокисных пигментов включает отделение фракции крупностью до 10 мм из шлама газоочистки мелкодисперсной пыли металлургического производства, ее обезвоживание путем сушки и последующее...
Тип: Изобретение
Номер охранного документа: 0002540640
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.38a7

Кровоостанавливающий препарат

Изобретение относится к медицине и ветеринарии и предназначено для ускорения остановки кровотечения при повреждении кровеносных сосудов при травмах и ранениях. Кровоостанавливающий препарат содержит 3-20% масс. полисахарида, где полисахарид представлен хитозаном и/или крахмалом, 0,1-2% масс....
Тип: Изобретение
Номер охранного документа: 0002545991
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4172

Способ достижения сочетания высоких величин твердости и трещиностойкости высокоплотных наноструктурных изделий из карбида вольфрама

Изобретение относится к технологии получения высокоплотных изделий спеканием заготовок из уплотненных нанодисперсных порошков карбида вольфрама методом электроимпульсного плазменного спекания (SPS) и может быть использовано при изготовлении металлообрабатывающих инструментов, мишеней для...
Тип: Изобретение
Номер охранного документа: 0002548252
Дата охранного документа: 20.04.2015
20.05.2015
№216.013.4c47

Способ формирования ультрамелкозернистой структуры в цветных сплавах на основе меди и алюминия (варианты)

Изобретение относится к области металлургии, в частности к изменению физической структуры цветных металлов или их сплавов, и может быть использовано в различных отраслях машиностроения при изготовлении высокоответственных изделий, работающих в экстремальных условиях, например для...
Тип: Изобретение
Номер охранного документа: 0002551041
Дата охранного документа: 20.05.2015
Показаны записи 11-20 из 21.
20.10.2014
№216.013.0033

Способ определения стресса

Изобретение относится к области медицины, а именно к диагностике и физиологии. Выполняют регистрацию значений R-R интервалов сердечного ритма и обработку полученной последовательности R-R интервалов. Длительность последовательности R-R интервалов выбирают не менее чем 300 сек. После чего...
Тип: Изобретение
Номер охранного документа: 0002531443
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.0516

Способ изготовления высокоответственных изделий из трехкомпонентного титанового сплава

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении изделий из трехкомпонентного сплава на основе титана, содержащего алюминий в количестве 2-6 вес.% и ванадий или цирконий в количестве не более 4 вес.%. Производят равноканальное угловое...
Тип: Изобретение
Номер охранного документа: 0002532700
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0e8d

Способ определения аполипопротеина а1 и аполипопротеина в сыворотки крови

Изобретение относится к медицине, а именно к лабораторной диагностике, и может применяться для определения аполипопротеина А1 и аполипопротеина В сыворотки крови с целью выявления факторов риска атеросклероза коронарных артерий при скрининге у населения. Способ включает пропускание ультразвука...
Тип: Изобретение
Номер охранного документа: 0002535142
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1333

Способ создания плазменной антенны

Изобретение относится к антенной технике и может быть использовано для исследования магнитосферы Земли и для задач дальней НЧ радиосвязи. Технический результат - повышение мощности НЧ источника электромагнитного излучения, улучшение качества НЧ радиосвязи. Для этого осуществляют формирование...
Тип: Изобретение
Номер охранного документа: 0002536338
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.16cf

Способ скрининга и мониторинга онкологических заболеваний и набор для его осуществления (варианты)

Группа изобретений относится к области биохимии. Заявлены варианты способа скрининга и мониторинга онкологических заболеваний, включающего забор образца ткани, выделение из образца ткани РНК, синтез кДНК, амплификацию методом множественной обратной транскрипции полимеразой цепной реакции с...
Тип: Изобретение
Номер охранного документа: 0002537263
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1d82

Производное n-(1s)-1',2',3'-триметокси-6,7-дигидро-1н-бензо[5',6':5,4]циклогепта-[3,2-f]бензофуран-1-ил)ацетамида и его применение

Данное изобретение относится к новым гетероциклическим соединениям, содержащим пятичленные кольца, конденсированные с другими ядрами, только с одним атомом кислорода в качестве гетероатома, а именно к производным...
Тип: Изобретение
Номер охранного документа: 0002538982
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.23e3

Способ получения железоокисных пигментов

Изобретение может быть использовано в производстве декоративных строительных материалов. Способ получения железоокисных пигментов включает отделение фракции крупностью до 10 мм из шлама газоочистки мелкодисперсной пыли металлургического производства, ее обезвоживание путем сушки и последующее...
Тип: Изобретение
Номер охранного документа: 0002540640
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.38a7

Кровоостанавливающий препарат

Изобретение относится к медицине и ветеринарии и предназначено для ускорения остановки кровотечения при повреждении кровеносных сосудов при травмах и ранениях. Кровоостанавливающий препарат содержит 3-20% масс. полисахарида, где полисахарид представлен хитозаном и/или крахмалом, 0,1-2% масс....
Тип: Изобретение
Номер охранного документа: 0002545991
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4172

Способ достижения сочетания высоких величин твердости и трещиностойкости высокоплотных наноструктурных изделий из карбида вольфрама

Изобретение относится к технологии получения высокоплотных изделий спеканием заготовок из уплотненных нанодисперсных порошков карбида вольфрама методом электроимпульсного плазменного спекания (SPS) и может быть использовано при изготовлении металлообрабатывающих инструментов, мишеней для...
Тип: Изобретение
Номер охранного документа: 0002548252
Дата охранного документа: 20.04.2015
20.05.2015
№216.013.4c47

Способ формирования ультрамелкозернистой структуры в цветных сплавах на основе меди и алюминия (варианты)

Изобретение относится к области металлургии, в частности к изменению физической структуры цветных металлов или их сплавов, и может быть использовано в различных отраслях машиностроения при изготовлении высокоответственных изделий, работающих в экстремальных условиях, например для...
Тип: Изобретение
Номер охранного документа: 0002551041
Дата охранного документа: 20.05.2015
+ добавить свой РИД