×
10.05.2014
216.012.c206

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ИЗМЕНЕНИЯ КУРСОВОГО УГЛА ДВИЖЕНИЯ ИСТОЧНИКА ЗОНДИРУЮЩИХ СИГНАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002515419
Дата охранного документа
10.05.2014
Аннотация: Настоящее изобретение относится к области гидроакустики и может быть использовано для определения параметров движения гидролокаторов или других источников излучения зондирующих сигналов. Техническим результатом использования предлагаемого изобретения является определение элементов движения источника зондирующих сигналов за несколько принятых посылок. Способ измерения изменения курсового угла движения источника зондирующих сигналов содержит последовательный прием зондирующих сигналов перемещающегося источника, спектральный анализ первого, второго и n-ого принятых сигналов, в каждом из этих принятых сигналов определение порога обнаружения, измерение амплитуды спектральных отсчетов, превысивших порог, определение и запоминание значения спектральных отсчета F, F и F имеющих максимальную амплитуду, вычисление разности значений спектральных отсчетов F-F и F-F а значение изменения курсового угла движения источника зондирующих сигналов определяют как , где , если угол между приемником и источником зондирующих сигналов увеличивается, или , если угол между приемником и источником зондирующих сигналов уменьшается, а при (Fn-F)(F-F)=1 считают, что курсовой угол движения не изменился или изменился незначительно. 1 ил.
Основные результаты: Способ измерения изменения курсового угла движения источника зондирующих сигналов, содержащий последовательный прием зондирующих сигналов перемещающегося источника, отличающийся тем, что: производят спектральный анализ первого, второго и n-ого принятых сигналов, в каждом из этих принятых сигналов определяют порог обнаружения, измеряют амплитуды спектральных отсчетов, превысивших порог, определяют и запоминают значения спектральных отсчета F, F и F, имеющих максимальную амплитуду, вычисляют разности значений спектральных отсчетов F-F и F-F, а значение изменения курсового угла движения источника зондирующих сигналов определяют как , где , если угол между приемником и источником зондирующих сигналов увеличивается, или , если угол между приемником и источником зондирующих сигналов уменьшается, а при (Fn-F)/(F-F)=1 считают, что курсовой угол движения не изменился или изменился незначительно.

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения гидролокационных сигналов (ОГС) в современных гидроакустических комплексах.

Зондирующие сигналы, излучаемые гидролокаторами, размещенными на различных носителях, в том числе и подвижных, могут быть обнаружены на больших дистанциях с использованием известных систем обнаружения гидролокационных сигналов (Ю.А.Корякин, С.А.Смирнов, Г.В.Яковлев, «Корабельная гидроакустическая техника», СПб, Наука, 2004 г., стр.89-92). При обнаружении этих сигналов возникает задача измерения параметров зондирующего сигнала, а также задача определения направления и курсового угла движения источника зондирующего сигнала.

Известны методы обнаружения местоположения источника зондирующих сигналов, изложенные в работе А.А.Простаков «Гидроакустические средства флота», М.: 1974 г., стр.90. В работе рассматривается задача определения места случайной цели, излучающей импульсные сигналы при использовании нескольких приемных постов. Измеряются разности времени прихода звука к каждому приемнику, которые в свою очередь соответствуют разностям расстояний от источника звука до соответствующих приемников. Как известно, геометрическим местом точек, разность расстояний которых до приемников постоянна, является гипербола. Определив точку пересечения рассчитанных гипербол, можно найти место источника звука и соответственно дистанцию до него, определить следующее место источника сигналов, построить траекторию движения источника и определить курсовой угол движения источника сигналов.

В ряде случаях эта задача может быть решена с использованием триангуляционного метода при применении нескольких приемников или по оценке нескольких пеленгов (В.И.Дмитриев и др. «Навигация и лоция», Москва, 2009 г., стр.278.). Аналогично можно определить местоположение источника зондирующих сигналов при приеме серии импульсов и при сложном маневрировании, для чего необходимо длительное время работы наблюдаемого гидролокатора и длительное время фиксированного маневрирования, что не всегда возможно и целесообразно (Сборник «50 лет ЦНИИ. Морфизприбор», СПб., 1999 г., стр.149. Ю.А.Корякин, С.А.Смирнов, Г.В.Яковлев, «Корабельная гидроакустическая техника», СПб, Наука, 2004 г., стр.67.). Тем не менее, этот способ является наиболее близким аналогом и может быть принят за прототип.

Способ содержит последовательный прием зондирующих сигналов, излучаемых наблюдаемым источником, определение момента времени прихода первого принятого зондирующего сигнала, измерение направления прихода зондирующего сигнала, определение изменения собственного положения приемника зондирующих сигналов, определение скорости движения приемника зондирующих сигналов, определение времени приема следующего зондирующего сигнала в новой точке местоположения приемника, измерение направления на источник зондирующего сигнала в новой точке нахождения приемника зондирующих сигналов, по измеренным пеленгам и по измеренному пройденному расстоянию определяют положение точки пересечения направлений на источник зондирующих сигналов, по двум углам и стороне определяют стороны треугольника, которые и будут равны дистанциям до источника зондирующих сигналов на моменты измерения направлений. Повторив измерения и получив новую дистанцию, можно определить скорость перемещения источника излучения, и направление движения источника зондирующих сигналов, что является характеристикой курсового угла движения источника зондирующих сигналов относительно приемника зондирующих сигналов.

Для осуществления этого способа необходимо, чтобы источник зондирующего сигнала (гидролокатор), параметры которого определяют, работал непрерывно, а это не всегда имеет место. Другим недостатком способа является необходимость сложной схемы маневрирования приемника зондирующих сигналов, которая требует много времени. За это время положение движущегося гидролокатора может существенно измениться, что приведет к ошибке определения курсового угла движения источника сигнала относительно приемника.

Задачей изобретения является упрощение процедуры определения изменения курсового угла движения источника зондирующего сигнала относительно приемника зондирующих сигналов.

Техническим результатом предлагаемого технического решения является обеспечение возможности определения величины изменения курсового угла движения источника зондирующих сигналов относительно приемника зондирующих сигналов по нескольким принятым зондирующим сигналам и их характерным особенностям.

Для достижения указанного технического результата в способ, содержащий последовательный прием зондирующих сигналов перемещающегося источника, введены дополнительные признаки, а именно: производят спектральный анализ первого, второго и n-ого принятых сигналов, в каждом из этих принятых сигналов определяют порог обнаружения, измеряют амплитуды спектральных отсчетов, превысивших порог, определяют и запоминают значения спектральных отсчета F1, F2 и Fn, имеющих максимальную амплитуду, вычисляют разности значений спектральных отсчетов F2-F1 и Fn-F1, а значение изменения курсового угла движения источника зондирующих сигналов определяют как , где , если источник зондирующих сигналов приближается, или , если источник зондирующих сигналов удаляется, а при (Fn-F1)/(F2-F1)=1 считают, что курсовой угол движения не изменился или изменился незначительно.

Поясним достижение технического результата.

Как правило, работа гидролокатора, являющегося источником зондирующего сигнала, имеет свой целью обзор пространства и обнаружение какого-либо объекта по наличию эхосигнала от него. Дальность распространения зондирующего сигнала гидролокатора существенно больше, чем дальность обнаружения отраженного эхосигнала. Поэтому зондирующий сигнал обнаруживается приемным устройством системы ОГС практически всегда при первых же сигналах излучения, вероятность пропуска такого сигнала прямого распространения чрезвычайно мала. Излучения зондирующего сигнала происходят в фиксированных точках по дистанции при движении источника (гидролокатора), через определенный интервал времени, величина которого выбирается в зависимости от шкалы работы гидролокатора и определяется частотой повторения зондирующего сигнала или скважностью излучения.

В гидроакустике, да и в радиолокации, известен «эффект Доплера», который заключается в том, что при движении источника или приемника частота излученного зондирующего сигнала отличается от частоты принятого сигнала (А.С.Колчеданцев, Гидроакустические станции. Судостроение, Л., 1982 г., с.21).

Можно записать: F2=F1+F1V/C, где F1 - частота излученного сигнала, F2 - частота принятого сигнала, V - скорость перемещения, С - скорость звука. Это справедливо в том случае, если перемещение источника происходит непосредственно в направлении приемника. Однако, в большинстве случаях перемещение происходит под углом и тогда под скоростью перемещения понимается скорость сближения или радиальная составляющая исходной скорости, которая определяется углом между направлением движения и направлением между источником и приемником. Тогда F2=F1+F1VcosQ0/C или после преобразования и с учетом следующего зондирующего сигнала . Разделим правые и левые части независимых уравнений и получим:

.

Частота излучения гидролокатора не известна, если бы она была известна, то можно было бы измерить курсовой угол движения гидролокатора. Поэтому определяется величина изменения курсового угла движения источника зондирующего сигнала относительно приемника и за частоту F1 принимается измеренная частота первого принятого зондирующего сигнала. Если учесть, что на первых посылках изменение угла меньше, чем на последующих, то можем положить, что оценка cosQ21 близка к 1, и тогда получим:

(Fn-F1)/(F2-F1)=cosQn1, где F1 - частота первого принятого сигнала, a Qn1 - величина изменения курсового угла за время между посылками 1 и n. Точность оценки изменения курсового угла движения источника зондирующих сигналов будет зависеть от того, насколько частота F1 отличается от исходной частоты излучения.

В реальных условиях первоначальное направление движения гидролокатора непосредственно на приемник встречается редко. Поэтому полученная по результатам вычислений оценка величины изменения курсового угла движения источника зондирующих сигналов будет отличаться от истинной величины изменения. Тем не менее, будет измерен сам факт изменения направления движения, ориентировочная величина изменения курсового угла движения гидролокатора, значение оценки которой будет улучшаться с каждой новой принятой посылкой. Если (Fn-F1) меньше чем (F2-F1), это означает, что курсовой угол движения гидролокатора по отношению к приемнику увеличивается. Если (Fn-F1) больше чем (F2-F1), то курсовой угол движения гидролокатора относительно приемника уменьшается. В этом случае для вычисления величины изменения курсового угла движения источника зондирующих сигналов необходимо взять величину, обратную полученной, и по отношению к ней определить изменение курсового угла источника зондирующих сигналов. Если (Fn-F1)=(F2-F1), это означает, что курсовой угол движения гидролокатора по отношению к приемнику практически не изменился. Как правило, частота повторений зондирующих сигналов поисковых гидролокаторов достаточно высокая. За время между излучениями гидролокатор не существенно изменит свое местоположение и поэтому на первых посылках частота изменится не существенно. Поэтому измерение частоты производится по каждой принятой посылке, оценка разности частот производится по каждому последующему сигналу, вычисление отношения каждый раз производится к первой измеренной разности частот, что с каждым принятым сигналом ведет к повышению достоверности измеренного изменения курсового угла движения.

Сущность изобретения поясняется чертежом, на котором приведена блок-схема устройства, реализующего предлагаемый способ.

Устройство содержит антенну 1, соединенную через приемное устройство 2, блок 3 спектрального анализа с первым входом блока 5 измерения значения спектрального отсчета с максимальной амплитудой. Выход блока 5 соединен с входом блока 6 памяти, первый выход которого соединен с первым входом блока 9 принятия решения. Второй выход блока 3 через блок 4 выбора порога соединен со вторым входом блока 5. Второй выход блока 6 через блок 7 вычисления разности и блок 8 вычисления значения угла изменения курса соединен со вторым входом блока 9 принятия решения.

Пример осуществления предлагаемого способа целесообразно рассмотреть совместно с описанием работы устройства, реализующего способ.

Зондирующие сигналы, принятые антенной 1, поступают на приемное устройство 2, где обнаруживаются и передаются на блок 3 спектрального анализа. Эти блоки являются известными устройствами, которые реализованы в прототипе и в системах обнаружения сигналов гидролокаторов (Ю.А.Корякин, С.А.Смирнов, Г.В.Яковлев, Корабельная гидроакустическая техника, СПб.: «Наука», 2004 г., С.89-92). С выхода блока 3 отсчеты спектра выделенного зондирующего сигнала поступают в блок 4, где производится сравнение их с порогом, после чего в блоке 5 производится определение спектрального отсчета с максимальной амплитудой. Зондирующие сигналы, принимаемые аппаратурой обнаружения гидролокационных сигналов, являются сигналами прямого распространения и поэтому обрабатываются в приемном устройстве при большом отношении сигнал помеха, поэтому проблемы выбора порога в этой ситуации нет. На выходе блока 3 отсчеты спектра могут иметь различное значение и различную амплитуду, кроме того, для решения поставленной задачи необходима селекция отсчетов по частоте и по амплитуде. Это задача решается в блоке 4, который формирует пороговый сигнал по амплитуде и пороговые границы сигнала по частоте. Выбранные отсчеты спектра поступают в блок 5 определения спектрального отсчета с максимальной амплитудой, где выбираются значения частот, амплитуда которых максимальна для принятого зондирующего сигнала. Значение этого спектрального отсчета и номер зондирующего сигнала с временем обнаружения из блока 5 передаются в блок 6 памяти, где подбираются спектры по времени и по парам. Отобранные пары спектральных отсчетов поступают в блок 7 для вычисления разности и вычисления отношений измеренной разности к первой разности, которая хранится в этом же блоке. После этого происходит определение косинуса угла и определение величины изменения курсового угла движения источника зондирующих сигналов. Все эти параметры поступают в блок принятия решения 9, где отображаются и используются для формирования трассы движения гидролокатора зондирующих сигналов.

Все эти вычислительные операции, операции запоминания, выбора и сравнения могут быть проведены в спецпроцессорах, используемых для обнаружения зондирующих сигналов гидролокатора при разработке программного обеспечения (там же стр.281-295).

Таким образом, без маневрирования, только путем измерения разности спектральных отсчетов между приемами зондирующих сигналов и вычисления их отношения, а также с использованием простых математических операций над ними удается определить изменение курсового угла перемещающегося источника зондирующего сигнала и отслеживать направление его движения.

Способ измерения изменения курсового угла движения источника зондирующих сигналов, содержащий последовательный прием зондирующих сигналов перемещающегося источника, отличающийся тем, что: производят спектральный анализ первого, второго и n-ого принятых сигналов, в каждом из этих принятых сигналов определяют порог обнаружения, измеряют амплитуды спектральных отсчетов, превысивших порог, определяют и запоминают значения спектральных отсчета F, F и F, имеющих максимальную амплитуду, вычисляют разности значений спектральных отсчетов F-F и F-F, а значение изменения курсового угла движения источника зондирующих сигналов определяют как , где , если угол между приемником и источником зондирующих сигналов увеличивается, или , если угол между приемником и источником зондирующих сигналов уменьшается, а при (Fn-F)/(F-F)=1 считают, что курсовой угол движения не изменился или изменился незначительно.
СПОСОБ ИЗМЕРЕНИЯ ИЗМЕНЕНИЯ КУРСОВОГО УГЛА ДВИЖЕНИЯ ИСТОЧНИКА ЗОНДИРУЮЩИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ ИЗМЕНЕНИЯ КУРСОВОГО УГЛА ДВИЖЕНИЯ ИСТОЧНИКА ЗОНДИРУЮЩИХ СИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 51-59 из 59.
26.08.2017
№217.015.df36

Способ определения глубины погружения объекта

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматической и автоматизированной классификации морских объектов, применительно к гидролокационным станциям ближнего действия. Технический результат - обеспечение классификации объекта, обнаруженного...
Тип: Изобретение
Номер охранного документа: 0002625041
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e1bf

Способ измерения скорости звука по трассе

Изобретение относится к гидроакустике, в частности к средствам измерения скорости звука. Способ измерения скорости звука по трассе заключается в излучении зондирующего сигнала неподвижным источником через постоянные промежутки времени Т, сохраняя длительность сигнала постоянной. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002625716
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e400

Система автоматического обнаружения и классификации гидролокатора ближнего действия

Настоящее изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружения и классификации реальных объектов гидролокационными системами освещения ближней обстановки на фоне реверберационной помехи. Система автоматического обнаружения и классификации...
Тип: Изобретение
Номер охранного документа: 0002626295
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.eaa5

Способ обнаружения объекта и измерения его параметров

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхосигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и измерения параметров, объекта. Способ измерения дистанции содержит излучение зондирующего...
Тип: Изобретение
Номер охранного документа: 0002627977
Дата охранного документа: 14.08.2017
19.01.2018
№218.016.06d7

Способ определения скорости звука

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе распространения сигналов, что необходимо для повышения эффективности работы гидролокаторов освещения подводной обстановки, а также для проведения исследований и измерительных работ...
Тип: Изобретение
Номер охранного документа: 0002631234
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.070b

Способ измерения гидролокатором параметров вытекающего газа из трубы подводного газопровода

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены, определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами. Технический результат - обеспечение обнаружения и классификации источника утечки газа подводного...
Тип: Изобретение
Номер охранного документа: 0002631228
Дата охранного документа: 19.09.2017
20.01.2018
№218.016.143c

Способ определения маневра шумящего объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано при решении задач обработки сигнала шумоизлучения объекта в гидроакустических системах и определения параметров движения обнаруженного объекта. Используя последовательную корреляционную обработку спектров можно...
Тип: Изобретение
Номер охранного документа: 0002634786
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1460

Способ обнаружения локального объекта на фоне распределенной помехи

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения локального объекта в условиях наличия распределенных помех различного происхождения. Предложен способ обнаружения локального объекта на фоне распределенной помехи, который основан на...
Тип: Изобретение
Номер охранного документа: 0002634787
Дата охранного документа: 03.11.2017
09.05.2019
№219.017.5089

Способ классификации эхо-сигнала гидролокатора

Использование: для построения систем классификации объектов, обнаруженных при работе в режиме гидролокации. Сущность: в способе обнаружения эхосигнала гидролокатора производят проведение спектрального анализа полученных наборов дискретизированных отсчетов, по каждому набору дискретизированных...
Тип: Изобретение
Номер охранного документа: 0002466419
Дата охранного документа: 10.11.2012
Показаны записи 71-80 из 84.
11.04.2019
№219.017.0b3a

Способ панорамной классификации шумящих объектов

Изобретение относится к области гидроакустики и предназначено для одновременного распознавания всех объектов, наблюдаемых в секторном обзоре шумопеленгования. Заявленный способ панорамной классификации шумящих объектов включает прием гидроакустического шумового сигнала многоэлементной антенной,...
Тип: Изобретение
Номер охранного документа: 0002684439
Дата охранного документа: 09.04.2019
19.04.2019
№219.017.344b

Способ автоматической классификации

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Техническим результатом изобретения является обеспечение автоматической классификации объекта. Для этого осуществляют излучение...
Тип: Изобретение
Номер охранного документа: 0002461020
Дата охранного документа: 10.09.2012
09.05.2019
№219.017.5089

Способ классификации эхо-сигнала гидролокатора

Использование: для построения систем классификации объектов, обнаруженных при работе в режиме гидролокации. Сущность: в способе обнаружения эхосигнала гидролокатора производят проведение спектрального анализа полученных наборов дискретизированных отсчетов, по каждому набору дискретизированных...
Тип: Изобретение
Номер охранного документа: 0002466419
Дата охранного документа: 10.11.2012
02.07.2019
№219.017.a311

Гидроакустический способ определения параметров цели при использовании взрывного сигнала с беспроводной системой связи

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения эхо-сигнала от объекта, измерения параметров обнаруженного объекта и его классификации при использовании взрывных сигналов. Техническим результатом при использовании предлагаемого способа...
Тип: Изобретение
Номер охранного документа: 0002692841
Дата охранного документа: 28.06.2019
13.07.2019
№219.017.b340

Способ обработки гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации различного назначения. Способ обработки гидролокационной информации, содержит излучение сигнала, прием отраженного эхосигнала сформированным веером статических...
Тип: Изобретение
Номер охранного документа: 0002694269
Дата охранного документа: 11.07.2019
19.07.2019
№219.017.b660

Способ обнаружения и определения дистанции с помощью взрывного сигнала в гидроакустической локальной сетевой системе связи

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения эхо-сигнала от объекта, измерения параметров обнаруженного объекта и его классификации при использовании взрывных сигналов в гидроакустической локальной сетевой системе связи. Взрывные...
Тип: Изобретение
Номер охранного документа: 0002694796
Дата охранного документа: 16.07.2019
23.08.2019
№219.017.c265

Гидролокационный способ обнаружения объекта и измерения его параметров

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхосигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и измерения параметров объекта при использовании псевдошумовых сигналов в условиях применения...
Тип: Изобретение
Номер охранного документа: 0002697937
Дата охранного документа: 21.08.2019
22.01.2020
№220.017.f806

Способ классификации гидроакустических сигналов шумоизлучения морских объектов

Настоящее изобретение относится к области гидроакустики и предназначено для классификации сигналов шумоизлучения обнаруженных объектов, в том числе и сигналов шумоизлучения, вызванных источниками биоакустики. Способ классификации гидроакустических сигналов шумоизлучения морских объектов...
Тип: Изобретение
Номер охранного документа: 0002711406
Дата охранного документа: 17.01.2020
23.04.2020
№220.018.17f5

Способ определения маневра шумящего объекта

Изобретение относится к области гидроакустики, может быть использовано при решении задач обработки сигнала шумоизлучения объекта в гидроакустических системах и предназначено для определения параметров движения обнаруженного объекта. Способ основан на приеме шумового сигнала объекта...
Тип: Изобретение
Номер охранного документа: 0002719626
Дата охранного документа: 21.04.2020
24.06.2020
№220.018.2a23

Способ отображения гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации, для получения более полной информации о пространственном положении обнаруженных объектов в одном цикле «излучение - прием». Способ отображения гидролокационной...
Тип: Изобретение
Номер охранного документа: 0002724245
Дата охранного документа: 22.06.2020
+ добавить свой РИД