×
27.04.2014
216.012.bd6d

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу обработки поверхности стали. Осуществляют подготовку поверхности путем очистки от окалины и обработку лазерным лучом. Лазерную обработку поверхности проводят импульсной генерацией лазерного излучения с длиной волны 0,8-1,2 мкм, мощностью излучения 10-10 Вт/см, частотой импульсов 28-35 кГц и скоростью сканирования лазером поверхности в зоне обработки 8-12 см/с. Для образования на поверхности стали слоя из оксидов железа, обеспечивающего сохранение состава и свойств более глубоких слоев металла, лазерную обработку поверхности проводят на глубину поверхности 10-40 нм. Технический результат заключается в повышении коррозионной стойкости стали.1 з.п.ф-лы, 1 табл.

Изобретение относится к области материаловедения и обработки поверхности металлов, а именно к снижению скорости коррозии нелегированных и низколегированных сталей.

Известен способ защиты металлических поверхностей от коррозии методом высокоэнергетического воздействия, например лазерным переплавом [1].

Известен также способ [2] защиты металлических поверхностей от коррозии, заключающийся в том, что лазерному переплаву подвергают лишь небольшую часть поверхности, в результате чего происходит частичное выгорание углерода в стали. Обработанные поверхности становятся более однородными, в действие вступает локальная гальванопара «обработанная - необработанная поверхность», что, по мнению авторов, снижает общий коррозионный ток (прототип).

В то же время известно, что наиболее эффективное снижение коррозии низколегированных и нелегированных сталей наблюдается при переходе их в пассивное состояние. Однако обычные углеродистые стали пассивируются лишь в присутствии ингибиторов окислительного типа или при высоких значениях рН среды.

Нами была поставлена задача повысить коррозионную стойкость поверхности стали путем реализации специального режима лазерной обработки.

Поставленная задача перевода поверхности стали в пассивное состояние с повышенной коррозионной стойкостью была достигнута в результате лазерной обработки поверхности в условиях импульсной генерации лазерного излучения с длиной волны 0,8-1,2 мкм, мощностью излучения 10-10 Вт/см, частотой импульсов 28-35 кГц и скоростью сканирования лазером поверхности в зоне обработки 8-12 см/с. При этом для образования на поверхности стали слоя из оксидов железа, обеспечивающего сохранение состава и свойств более глубоких слоев металла, лазерную обработку поверхности проводили на глубину поверхности 10-40 нм в вакууме, в среде инертного газа или на воздухе.

Результаты исследований показали, что в ходе лазерной обработки, например поверхности стали 40Х при заявляемом режиме, согласно данным рентгено-фотоэлектронной спектроскопии, образуются наноразмерные негидратированные оксиды Fe(+2) и Fe(+3). Данные оксиды имеют прочную химическую связь с подложкой и, в отличие от оксидов, образующихся при пассивации сталей в водных растворах, не разрушаются при депассивации. Иначе говоря, после лазерной обработки в выбранном режиме поверхность стали изначально находится в состоянии пассивации.

Конкретные примеры реализации изобретения

Изучались образцы стали 40Х и У10, которые представляли из себя цилиндры с площадью основания 0,6-1,6 см2. Для обработки поверхности использовался оптоволоконный иттербиевый импульсный лазер с длиной около 1 мкм, плотностью мощности излучения 106 Вт/см2. Скорость сканирования луча лазера в зоне обработки 10 см/с, частота следования импульсов - 33 кГц.

Основание цилиндра служило рабочей поверхностью электрода. Подготовка поверхности перед электрохимическими исследованиями заключались в зачистке образцов от окалины на шлифовальной бумаге и дополнительной шлифовке поверхности порошком Al2O3, смоченным дистиллированной водой.

Исследовались обработанные лазерным облучением стали 40Х:

№26 - без лазерной обработки;

№27 - лазерная обработка на воздухе;

№28 - лазерная обработка в аргоне;

№29 - лазерная обработка в вакууме 10-2 мм рт.ст.;

сталь У10 - без обработки;

№120 - лазерная обработка вакуум-аргон;

№121 - лазерная обработка в воздухе с аргоном;

№122 - лазерная обработка в вакууме с аргоном.

Поляризационные измерения выполнены в потенциодинамическом режиме на потенциостате IPC-Pro L в стандартной электрохимической ячейке ЯСЭ-2 при комнатной температуре в условиях естественной аэрации. В качестве электрода сравнения использовали хлорид-серебряный электрод, вспомогательный - платиновый.

Поляризационные измерения в анодной области потенциалов проводились при скорости развертки потенциала 1 мВ/с. Температура (22±2)°С, фоновый электролит - боратный буферный раствор с рН 7,4.

После подготовки образцов к испытаниям в анодной области их помещали в электрохимическую ячейку с соответствующим раствором, выдерживали до установления стационарного потенциала (10-15 минут) и включали анодную поляризацию со скоростью 1 мВ/с. Плотность тока пересчитывали на видимую поверхность электрода.

Ниже приведены величины токов анодного растворения указанных образцов, характеризующие скорость коррозии при потенциале +500 мВ.

Можно видеть, что электроды, прошедшие лазерную обработку, показывают меньшие токи анодного растворения. В ряду образцов наблюдается рост коррозионной стойкости поверхности металла.

ст.40Х (без обработки) 13 мкА/см2
образец №27 11 мкА/см2
образец №28 9 мкА/см2
образец №29 5 мкА/см2

Таким образом, наблюдается повышение коррозионной стойкости ст.40Х после выбранных режимов лазерной обработки.

В табл.1 и 2 приведены результаты РФЭС исследований образца из ст.40Х без обработки и образца №29, подвергнутых лазерной обработке.

С целью определения состава слоев, ответственных за коррозионную стойкость поверхности, исследовали образцы после коррозионно-электрохимических испытаний.

Таблица 1
Результаты РФЭС - исследования образцов стали 40Х с выдержкой в растворе с рН 7,4 при потенциале пассивного состояния без лазерной обработки
Глубина l, нм Относительная доля соединения, % Строение поверхностных слоев
Fe Fe-O (аде.) FeO FeO(OH) Fe2O3
3 20,4 89,6 - - - Fe, Fe-O (аде.)
9 64,5 - 28,7 - 6,8 Fe, FeO, Fe2O3
22 70,5 - 20,3 - 9,2 Fe, FeO, Fe2O3

Таблица 2
Результаты РФЭС - исследования образцов стали 40Х в вакууме с выдержкой в растворе с рН 7,4 при потенциале пассивного состояния после лазерной обработки
Глубина l, нм Относительная доля соединения, % Строение поверхностных слоев
Fe Fe-O (аде.) FeO FeO(OH)
3 38,6 - 45,7 15,7 Fe, FeO, FeO(OH)
9 51,0 - 31,3 17,7 Fe, FeO, FeO(OH)
22 100 - - - Fe

Из табл.1 видно, что на поверхности ст.40Х без лазерной обработки поверхностный слой на глубине 3 нм состоит из железа и системы Fe-O, которую можно считать адсорбционной формой кислорода. На глубине 9 нм возрастает количество железа и появляется сигнал, соответствующий уже химическому соединению FeO в количестве 28,7%. В пассивирующем слое фиксируется и появление железа в степени окисления+3 (Fe2O3-6,8%). Не исключено, что этот оксид образуется в результате доокисления FeO. На глубине 22 нм становится выше содержание железа, сокращается количество оксида FeO, за счет чего выросло количество Fe2O3.

Эти данные дают основание считать, что исходный образец ст.40Х уже имеет элементы пассивного слоя. По мере контакта с электролитом этот слой за счет доокисления FeO до Fe2O3 становится более дефектным и, хотя при этом металл запассивирован, стойкость его меньше, чем, например, у легированных сталей.

У лазернообработанного образца пассивационный слой, состоящий из частичного окисленного железа, не превышает по толщине 9 нм. На глубине 22 нм никаких сигналов, кроме Fe, спектр РФЭС не дает. Данный образец содержит на поверхности FeO, Fe2O3 и частично гидратированный оксид FeO(OH). Процесс дальнейшего образования соединения Fe(III) не происходит, поэтому оксидный слой более плотный, хотя более тонкий, обладающий хорошими защитными свойствами. Этим и объясняется высокая коррозионная стойкость ст.40Х после лазерной обработки.

Аналогичные данные по переводу углеродистой стали в пассивное состояние получены на примере образцов из обработанных по выбранной технологии ст.У10. Согласно этим данным величины анодного тока растворения этой стали при потенциале +500 мВ составляют:

Образец Плотность тока, мкА/см2
ст.У-10 (без обработки) 9
№120 6
№121 8
№122 4

1. Колотыркин В.М., Княжева В.М. Возможности высокоэнергетических методов обработки поверхностей металлов для защиты от коррозии.// Защита металлов, 1991, Т.27, №2, С.184-186.

2. Патент РФ №2061100. Опубл. 27.05.1996 (прототип).

3. Патент РФ №2443506. Опубл. 27.02.2012.

Источник поступления информации: Роспатент

Показаны записи 11-14 из 14.
20.01.2018
№218.016.100f

Способ обработки поверхности пластины из циркониевого сплава

Изобретение относится к металлургии, в частности к обработке поверхности циркониевых сплавов для повышения коррозионной стойкости поверхности. Способ обработки поверхности пластины из циркониевого сплава включает нанесение порошка оксида магния на поверхность пластины и лазерную обработку,...
Тип: Изобретение
Номер охранного документа: 0002633688
Дата охранного документа: 16.10.2017
04.07.2018
№218.016.6a38

Способ нанесения смешанного углеродно-азотного защитного покрытия для повышения коррозионной стойкости железа

Изобретение относится к способам защиты металлов от коррозии, в частности к способу нанесения защитного покрытия на подложку из железа, и может быть использовано для изготовления изделий и деталей, работающих в агрессивных средах, для нефтяной, газовой, химической и других отраслей...
Тип: Изобретение
Номер охранного документа: 0002659537
Дата охранного документа: 02.07.2018
04.07.2019
№219.017.a524

Способ антикоррозионной обработки поверхности алюминия

Изобретение относится к способам антикоррозионной обработки поверхности изделий из алюминия. Поверхность изделия подвергают импульсному энергетическому воздействию излучением импульсного оптоволоконного иттербиевого лазера с длиной волны 1,065 мкм при удельной мощности излучения 4,539⋅10 …...
Тип: Изобретение
Номер охранного документа: 0002693278
Дата охранного документа: 02.07.2019
17.04.2020
№220.018.1550

Способ получения сверхтвердых износостойких покрытий с низким коэффициентом трения

Изобретение относится к способу формирования сверхтвердых износостойких покрытий. Покрытие наносят на поверхность стальной подложки путем короткоимпульсного лазерного оплавления порошковой обмазки за одну обработку. На поверхность стальной подложки наносят слой порошковой суспензии толщиной...
Тип: Изобретение
Номер охранного документа: 0002718793
Дата охранного документа: 14.04.2020
Показаны записи 11-20 из 21.
10.05.2018
№218.016.4cb6

Способ формирования антифрикционного покрытия с помощью автоматизированного устройства подачи порошкового материала в зону лазерной обработки

Изобретение относится к нанесению антифрикционных покрытий из порошковых материалов посредством их лазерного спекания на металлической поверхности. Способ формирования антифрикционного покрытия на поверхности стального изделия включает нанесение слоя порошковой композиции на поверхность...
Тип: Изобретение
Номер охранного документа: 0002652335
Дата охранного документа: 25.04.2018
04.07.2018
№218.016.6a38

Способ нанесения смешанного углеродно-азотного защитного покрытия для повышения коррозионной стойкости железа

Изобретение относится к способам защиты металлов от коррозии, в частности к способу нанесения защитного покрытия на подложку из железа, и может быть использовано для изготовления изделий и деталей, работающих в агрессивных средах, для нефтяной, газовой, химической и других отраслей...
Тип: Изобретение
Номер охранного документа: 0002659537
Дата охранного документа: 02.07.2018
16.01.2019
№219.016.b04a

Способ обработки поверхности сплава никелида титана

Изобретение относится к способу обработки поверхности сплава никелида титана. Поверхность сплава никелида титана сканируют лучом лазера с плотностью мощности луча 1,5-0,5⋅10 Вт/мм, средней мощностью лазерного облучения 0,48-56,2 Вт, с частотой импульсов 10-200 кГц и скоростью сканирования луча...
Тип: Изобретение
Номер охранного документа: 0002677033
Дата охранного документа: 15.01.2019
15.03.2019
№219.016.e01c

Способ лечения гипокальциемий, остеопорозов, переломов

Изобретение относится к медицине, в частности к ортопедии, и касается лечения заболеваний костей, обусловленных нарушением обмена кальция. Для этого официнальные препараты кальция измельчают до аморфного состояния и применяют перорально по 0,5-1,0 грамма, 2-4 раза в день, курсами не менее 10...
Тип: Изобретение
Номер охранного документа: 0002268053
Дата охранного документа: 20.01.2006
04.07.2019
№219.017.a524

Способ антикоррозионной обработки поверхности алюминия

Изобретение относится к способам антикоррозионной обработки поверхности изделий из алюминия. Поверхность изделия подвергают импульсному энергетическому воздействию излучением импульсного оптоволоконного иттербиевого лазера с длиной волны 1,065 мкм при удельной мощности излучения 4,539⋅10 …...
Тип: Изобретение
Номер охранного документа: 0002693278
Дата охранного документа: 02.07.2019
27.07.2019
№219.017.b9d3

Способ нанесения защитного противокоррозионного покрытия на стальные изделия и реагент для осуществления вышеуказанного способа

Изобретение относится к антикоррозионной обработке поверхности стальных изделий. Способ включает обработку поверхности стальных изделий в водном растворе реагента, в качестве которого применяют декагидрат бис(нитрило-трис-метиленфосфонато-аква-плюмбата(II)) тетранатрия, последующую сушку...
Тип: Изобретение
Номер охранного документа: 0002695717
Дата охранного документа: 25.07.2019
13.12.2019
№219.017.eca5

Электрод конденсатора с двойным электрическим слоем и способ его изготовления

Изобретение относится к области электротехники, а именно к электроду с двойным электрическим слоем и способу его изготовления, и может быть использовано в суперконденсаторах с двойным электрическим слоем. В качестве активного материала в предложенном суперконденсаторе использован...
Тип: Изобретение
Номер охранного документа: 0002708634
Дата охранного документа: 10.12.2019
09.03.2020
№220.018.0a96

Способ приготовления электролита для ванадиевых редокс батарей

Изобретение относится к области электротехники и может быть использовано при производстве ванадиевых электролитов для ванадиевых проточных окислительно-восстановительных редокс батарей (ВРБ). Техническим результатом изобретения является улучшение проводимости ванадиевого электролита на 20% по...
Тип: Изобретение
Номер охранного документа: 0002716148
Дата охранного документа: 06.03.2020
17.04.2020
№220.018.1550

Способ получения сверхтвердых износостойких покрытий с низким коэффициентом трения

Изобретение относится к способу формирования сверхтвердых износостойких покрытий. Покрытие наносят на поверхность стальной подложки путем короткоимпульсного лазерного оплавления порошковой обмазки за одну обработку. На поверхность стальной подложки наносят слой порошковой суспензии толщиной...
Тип: Изобретение
Номер охранного документа: 0002718793
Дата охранного документа: 14.04.2020
12.07.2020
№220.018.3226

Устройство на основе суперконденсатора для получения электрической энергии из внутриатомной

Изобретение относится к средству прямого преобразования атомной энергии в электрическую. Используется явление локально-неравновесной эмиссии электронов, возникающее под действием α- или β-распада изотопов. Необходимый эффект преобразования ядерной энергии в электрическую достигается путем...
Тип: Изобретение
Номер охранного документа: 0002726199
Дата охранного документа: 10.07.2020
+ добавить свой РИД