×
20.04.2014
216.012.bb74

Результат интеллектуальной деятельности: БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной и вычислительной техники, радиотехники и связи. Технический результат заключается в расширении в несколько раз предельного частотного диапазона обрабатываемых входных сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников ко входам компараторов напряжения. Для этого в отличие от известного быстродействующего аналого-цифрового преобразователя с дифференциальным входом в данном изобретении первый источник входного напряжения соединен со входом первого дополнительного буферного усилителя, выход которого связан с первыми входами каждого из компараторов напряжения через соответствующие корректирующие конденсаторы первой группы, а второй источник входного противофазного напряжения связан со входом второго дополнительного буферного усилителя, выход которого связан со вторыми входами каждого из компараторов напряжения через соответствующие корректирующие конденсаторы второй группы. 1 з.п.ф-лы, 8 ил.

Предлагаемое изобретение относится к области измерительной и вычислительной техники, радиотехники, связи и может использоваться в структуре различных устройств обработки аналоговой информации, измерительных приборах, системах телекоммуникаций и т.п.

В современной технике широкое применение находят параллельные аналого-цифровые преобразователи (АЦП) с дифференциальным входом, обеспечивающие наибольшую скорость преобразования аналоговых сигналов (uвх) в цифровые сигналы [1-9]. С повышением частоты входного напряжения uвх в таких микроэлектронных АЦП возникают существенные погрешности преобразования, обусловленные влиянием паразитных конденсаторов, образуемых емкостями на подложку активных и пассивных компонентов [8-9]. Дальнейшее повышение быстродействия параллельных АЦП - одна из проблем современной информационно-измерительной техники, решение которой позволит осуществить практическую реализацию новых систем связи и телекоммуникаций с более высокими качественными показателями.

Наиболее близким по технической сущности заявляемому устройству является параллельный АЦП, описанный в патенте фирмы IHP (Германия) DE 10 2009 002 062 fig.1, fig.2. Анализу его предельного частотного диапазона (fв.max) входных сигналов, а также попыткам увеличения fв.max за счет оптимизации абсолютных значений сопротивлений эталонных резисторов посвящены статьи [8-9], в том числе соавтора настоящей заявки [9].

АЦП-прототип фиг.1 содержит первый 1 входной буферный усилитель, вход которого соединен с первым 2 источником входного напряжения, а выход связан с первым 3 источником опорного тока через первую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (4.1) эталонного резистора, второго (4.2) эталонного резистора и N-го (4.N) эталонного резистора, второй 5 входной буферный усилитель, вход которого соединен со вторым 6 источником противофазного входного напряжения, а выход связан со вторым 7 источником опорного тока через вторую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (8.1) эталонного резистора, второго (8.2) эталонного резистора и N-го (8.N) эталонного резистора, первый 9 компаратор напряжения, первый 10 вход которого соединен с выходом первого 1 буферного усилителя, а второй вход 11 подключен к общему узлу второго 7 источника опорного тока и N-го (8.N) эталонного резистора второй группы, второй 12 компаратор напряжения, первый 13 вход которого соединен с общим узлом первого (4.1) и второго (4.2) эталонных резисторов первой группы, а второй вход 14 подключен к общему узлу N-го (8.N) и второго (8.2) эталонных резисторов второй группы, третий 15 компаратор напряжения, первый 16 вход которого соединен с общим узлом второго (4.2) и N-го (4.N) эталонных резисторов первой группы, а второй вход 17 подключен к общему узлу второго (8.2) и первого (8.1) эталонных резисторов второй группы, N-й 18 компаратор напряжения, первый 19 вход которого соединен с общим узлом первого 3 источника опорного тока и N-го (4.N) эталонного резистора первой группы, а второй вход 20 подключен к выходу второго 5 буферного усилителя, паразитные конденсаторы, связанные со входами каждого из компараторов напряжения 9, 12, 15, 18.

Существенный недостаток АЦП-прототипа (фиг.1) состоит в том, что его предельный частотный диапазон преобразования входных аналоговых сигналов в цифру (даже при реализации на сверхвысокочастотных транзисторах с fmax=200 ГГц техпроцесса SGB25H1, IHP, Германия [8,9]) ограничен из-за уменьшения на высоких частотах коэффициента передачи сигнала со входов АЦП 2 и 6 до входов компараторов напряжения 9, 12, 15, 18.

Основная задача предполагаемого изобретения состоит в расширении в несколько раз предельного частотного диапазона обрабатываемых входных сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников 2, 6 ко входам компараторов напряжения 9, 12, 15, 18.

Поставленная задача достигается тем, что в аналого-цифровом преобразователе фиг.1, содержащем первый 1 входной буферный усилитель, вход которого соединен с первым 2 источником входного напряжения, а выход связан с первым 3 источником опорного тока через первую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (4.1) эталонного резистора, второго (4.2) эталонного резистора и N-го (4.N) эталонного резистора, второй 5 входной буферный усилитель, вход которого соединен со вторым 6 источником противофазного входного напряжения, а выход связан со вторым 7 источником опорного тока через вторую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (8.1) эталонного резистора, второго (8.2) эталонного резистора и N-го (8.N) эталонного резистора, первый 9 компаратор напряжения, первый 10 вход которого соединен с выходом первого 1 буферного усилителя, а второй вход 11 подключен к общему узлу второго 7 источника опорного тока и N-го (8.N) эталонного резистора второй группы, второй 12 компаратор напряжения, первый 13 вход которого соединен с общим узлом первого (4.1) и второго (4.2) эталонных резисторов первой группы, а второй вход 14 подключен к общему узлу N-го (8.N) и второго (8.2) эталонных резисторов второй группы, третий 15 компаратор напряжения, первый 16 вход которого соединен с общим узлом второго (4.2) и N-го (4.N) эталонных резисторов первой группы, а второй вход 17 подключен к общему узлу второго (8.2) и первого (8.1) эталонных резисторов второй группы, N-й 18 компаратор напряжения, первый 19 вход которого соединен с общим узлом первого 3 источника опорного тока и N-го (4.N) эталонного резистора первой группы, а второй вход 20 подключен к выходу второго 5 буферного усилителя, паразитные конденсаторы, связанные со входами каждого из компараторов напряжения 9, 12, 15, 18, предусмотрены новые элементы и связи -первый 2 источник входного напряжения соединен со входом первого 21 дополнительного буферного усилителя, выход которого связан с первыми 10,13.16,19 входами каждого их компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы первой группы 22, 23, 24, 25, а второй 6 источник входного противофазного напряжения связан со входом второго 26 дополнительного буферного усилителя, выход которого связан со вторыми 11, 14, 17, 20 входами каждого из компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы второй группы 27, 28, 29, 30.

На фиг.1 приведена схема АЦП-прототипа.

На фиг.2 приведена схема заявляемого устройства в соответствии с п.1 формулы изобретения.

На фиг.3 и фиг.4 показаны секции заявляемого устройства фиг.2 в соответствии с п.2 формулы изобретения.

На фиг.5 представлена схема заявляемого АЦП фиг.2 в среде Cadence на моделях SiGe транзисторов (npn 200-n; техпроцесс SG25H1, IHP, Ik.max=4 мА. A high-performance 0.25 µm technology with npn-HBTs up to fT/fmax=180/220 GHz) при использовании идеальных источников опорного тока 3 и 7 (фиг.2).

На фиг.6 приведена логарифмическая амплитудно-частотная характеристика коэффициентов передачи аналоговой секции АЦП фиг.5 со входов 2 и 6 ко входам компараторов напряжения 9, 12, 15, 18 (K1, К2, К3, К4). Из данных графиков следует, что за счет введения новых связей существенно (с 0,6 ГГц до 10,4 ГГц, т.е. в 17 раз) расширяется диапазон рабочих частот, в пределах которого коэффициент передачи по напряжению аналоговой секции отличается от низкочастотного значения не более чем на 1 дБ. На данных графиках также показано, что в схеме АЦП-прототипа коэффициент передачи начинает существенно ухудшаться при f>0,6ГГц. При этом наблюдается несимметрия коэффициентов передачи к разным компараторам (K1, К2 и К3, К4). Данный эффект в заявляемом устройстве отсутствует.

На фиг.7 представлена схема заявляемого устройства фиг.2 в среде Cadence на моделях SiGe транзисторов (npn 200-n; техпроцесс SG25H1, IHP, Ik.max=4 мА. A high-performance 0.25 µm technology with npn-HBTs up to fT/fmax=180/220 GHz) для случая, когда учитываются паразитные емкости источников опорного тока (Сп=300 фФ), что соответствует сумме емкостей на подложку и емкости коллектор-база реальных транзисторов данной схемы.

На фиг.8 приведена логарифмическая амплитудно-частотная характеристика коэффициентов передачи аналоговых секций АЦП фиг.7 со входов 2 и 6 ко входам компараторов напряжения 9, 12, 15, 18 (K1, К2, К3, К4). Из данных графиков следует, что при больших емкостях источников опорного тока (300 фФ) диапазон рабочих частот заявляемого АЦП расширяется с 0,19 ГГц до 4,0 ГГц, т.е. более, чем в 21 раз. При этом коэффициенты передачи ко входам каждого компаратора (K1, К2, К3, К4) незначительно отличаются друг от друга в широком диапазоне частот.

Таким образом, из графиков фиг.6 и фиг.8 следует, что при разных сочетаниях паразитных емкостей (т.е. в зависимости от применяемых технологии и свойств пассивных и активных компонентов) предлагаемое техническое решение обеспечивает расширение предельного диапазона рабочих частот обрабатываемых АЦП входных сигналов.

Быстродействующий аналого-цифровой преобразователь с дифференциальным входом фиг.2 содержит первый 1 входной буферный усилитель, вход которого соединен с первым 2 источником входного напряжения, а выход связан с первым 3 источником опорного тока через первую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (4.1) эталонного резистора, второго (4.2) эталонного резистора и N-го (4.N) эталонного резистора, второй 5 входной буферный усилитель, вход которого соединен со вторым 6 источником противофазного входного напряжения, а выход связан со вторым 7 источником опорного тока через вторую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (8.1) эталонного резистора, второго (8.2) эталонного резистора и N-го (8.N) эталонного резистора, первый 9 компаратор напряжения, первый 10 вход которого соединен с выходом первого 1 буферного усилителя, а второй вход 11 подключен к общему узлу второго 7 источника опорного тока и N-го (8.N) эталонного резистора второй группы, второй 12 компаратор напряжения, первый 13 вход которого соединен с общим узлом первого (4.1) и второго (4.2) эталонных резисторов первой группы, а второй вход 14 подключен к общему узлу N-го (8.N) и второго (8.2) эталонных резисторов второй группы, третий 15 компаратор напряжения, первый 16 вход которого соединен с общим узлом второго (4.2) и N-го (4.N) эталонных резисторов первой группы, а второй вход 17 подключен к общему узлу второго (8.2) и первого (8.1) эталонных резисторов второй группы, N-й 18 компаратор напряжения, первый 19 вход которого соединен с общим узлом первого 3 источника опорного тока и N-го (4.N) эталонного резистора первой группы, а второй вход 20 подключен к выходу второго 5 буферного усилителя, паразитные конденсаторы, связанные со входами каждого из компараторов напряжения 9, 12, 15, 18. Первый 2 источник входного напряжения соединен со входом первого 21 дополнительного буферного усилителя, выход которого связан с первыми 10,13.16,19 входами каждого их компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы первой группы 22, 23, 24, 25, а второй 6 источник входного противофазного напряжения связан со входом второго 26 дополнительного буферного усилителя, выход которого связан со вторыми 11, 14, 17, 20 входами каждого из компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы второй группы 27, 28, 29, 30. Конденсаторы 31÷34 в схеме фиг.2 моделируют влияние на работу схемы АЦП паразитных емкостей на подложку используемых эталонных резисторов 4.1, 4.2, 4.N и входных емкостей компараторов 9, 12, 15, 16.

На чертежах фиг.3 и фиг.4, в соответствии с п.2 формулы изобретения, последовательно с каждым корректирующим конденсатором первой (22, 23, 24, 25) и второй (27, 28, 29, 30) групп включены соответствующие дополнительные корректирующие резисторы 35, 36, 37, 38 (фиг.3) и 39, 40, 41, 42 (фиг.4).

На фиг.4 конденсаторы 43, 44, 45, 46 моделируют паразитные емкости на входах компараторов напряжения 9, 12, 15, 18 (фиг.2).

Рассмотрим работу АЦП-прототипа фиг.1 в области высоких частот входных сигналов.

В АЦП-прототипе фиг.1 быстродействие аналоговой части (ее предельный частотный диапазон fв.max) определяется паразитными емкостями 31÷34 и 43÷44. Практически верхняя граничная частота по уровню -1 дБ АЦП-прототипа не превышает 700 МГц (фиг.6, Ск=0), в то время как быстродействие применяемых компараторов 9, 12, 15, 18, реализованных на СВЧ SiGe транзисторах [8,9] с fT=200 ГГц, позволяет работать в более широком частотном диапазоне.

В заявляемом устройстве фиг.2 за счет введения корректирующих конденсаторов 22, 23, 24, 25 и 27, 28, 29, 30 диапазон рабочих частот аналоговой секции АЦП расширяется более чем на порядок (фиг.6). Это позволяет обеспечить аналого-цифровое преобразование более высокочастотных входных сигналов.

Формирование цифрового эквивалента входного дифференциального напряжения в рассматриваемом АЦП обеспечивается традиционным методом путем анализа выходных логических уровней компараторов напряжения 9, 12, 15, 18.

Введение последовательно с корректирующими конденсаторами первой (22, 23, 24, 25) и второй (27, 28, 29, 30) групп дополнительных корректирующих резисторов (фиг.3, фиг.4) позволяет оптимизировать неравномерность амплитудно-частотной характеристики аналоговой части АЦП, что создает условия для дальнейшего расширения его предельного частотного диапазона (фиг.8).

Рассмотренный АЦП обеспечивает еще больший относительный выигрыш по частотному диапазону (с 0,19 ГГц до 4,0 ГГц) при использовании источников опорного тока 3 и 7 с повышенной емкостью на подложку Сп=300 фФ.

Таким образом, заявляемое устройство характеризуется существенными преимуществами в сравнении с прототипом по частотному диапазону обрабатываемых сигналов.

Источники информации

1. Патент US 5.589.831.

2. Патент US 5.231.399.

3. Патент US 6.437.724 fig.4.

4. Патент US 7.394.420 fig.2.

5. Патентная заявка US 2008/0036536 fig.43.

6. Патент US 4.763.106.

7. Патент US 4.912.469 fig.1.

8. Y.Borokhovych. 4-bit, 16 GS/s ADC with new Parallel Reference Network / Y.Borokhovych, H. Gustat, C.Scheytt // COMCAS 2009 - 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems.

9. Серебряков А.И. Метод повышения быстродействия параллельных АЦП / А.И.Серебряков, Е.Б. Борохович // Твердотельная электроника. Сложные функциональные блоки РЭА: Материалы научно-технической конференции. - М.: МНТОРЭС им. А.С. Попова, 2012. - С.150-155.


БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
БЫСТРОДЕЙСТВУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 199.
10.04.2015
№216.013.38fe

Многозначный сумматор по модулю k

Изобретение относится к области вычислительной техники, автоматики, связи. Техническим результатом является повышение быстродействия устройств преобразования информации. Многозначный сумматор по модулю k содержит: первый (1) и второй (2) токовые входы устройства, токовый выход (3) устройства,...
Тип: Изобретение
Номер охранного документа: 0002546078
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3902

Многозначный сумматор по модулю k

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в различных цифровых структурах и системах автоматического управления, передачи и обработки цифровой информации и т.п. Технический результат - повышение быстродействия устройств преобразования...
Тип: Изобретение
Номер охранного документа: 0002546082
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3905

Логический элемент сравнения k-значной переменной с пороговым значением

Изобретение относится к логическому элементу сравнения k-значной переменной с пороговым значением. Технический результат заключается в повышении быстродействия средств обработки цифровой информации за счет выполнения преобразования информации в многозначной токовой форме сигналов. Логический...
Тип: Изобретение
Номер охранного документа: 0002546085
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d79

Многозначный логический элемент циклического сдвига

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в различных цифровых структурах и системах автоматического управления, передачи цифровой информации. Техническим результатом является создание логического элемента, обеспечивающего циклический сдвиг...
Тип: Изобретение
Номер охранного документа: 0002547225
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d7f

Дешифратор 2 в 4

Изобретение относится к области вычислительной техники, автоматики и может использоваться в различных цифровых структурах и системах автоматического управления, передачи информации. Техническим результатом является повышение быстродействия и создание устройства, в котором внутреннее...
Тип: Изобретение
Номер охранного документа: 0002547231
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d81

Логический элемент нестрогого сравнения на неравенство двух многозначных переменных

Изобретение относится к области вычислительной техники, автоматики, связи. Техническим результатом является повышение быстродействия. Устройство содержит: первый (1) и второй (2) токовые входы устройства, токовый выход (3) устройства, первый (4) и второй (5) выходные транзисторы с объединенными...
Тип: Изобретение
Номер охранного документа: 0002547233
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.44ec

Логический элемент сравнения на равенство двух многозначных переменных

Предполагаемое изобретение относится к области цифровой вычислительной техники, автоматики, связи и может использоваться в различных цифровых структурах и системах автоматического управления и передачи цифровой информации. Технический результат заключается в создании логического элемента...
Тип: Изобретение
Номер охранного документа: 0002549142
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.44ee

К-значный логический элемент "максимум"

Изобретение относится к области вычислительной техники. Техническим результатом является создание логического элемента, обеспечивающего реализацию функции «максимум» двух многозначных переменных, в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов....
Тип: Изобретение
Номер охранного документа: 0002549144
Дата охранного документа: 20.04.2015
10.06.2015
№216.013.542d

K-значный логический элемент "минимум"

Предлагаемое изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в цифровых вычислительных структурах, системах автоматического управления, передачи и обработки цифровой информации. Технический результат - обеспечение реализации функции «минимум»...
Тип: Изобретение
Номер охранного документа: 0002553070
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.542e

Многозначный логический элемент обратного циклического сдвига

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в специализированных цифровых структурах, системах автоматического управления, устройствах передачи и обработки цифровой информации. Техническим результатом является создание логического элемента,...
Тип: Изобретение
Номер охранного документа: 0002553071
Дата охранного документа: 10.06.2015
Показаны записи 121-130 из 216.
11.10.2018
№218.016.90ca

Быстродействующий дифференциальный операционный усилитель для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в аналоговых интерфейсах и устройствах преобразования сигналов, в том числе работающих в диапазоне низких температур. Техническим результатом является повышение максимальной скорости нарастания выходного...
Тип: Изобретение
Номер охранного документа: 0002668968
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.90e8

Выходной каскад bijfet операционного усилителя

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве биполярно-полевых (BiJFet) буферных усилителей. Техническим результатом является обеспечение двухтактного преобразования входного напряжения при высокой линейности проходной характеристики, малом...
Тип: Изобретение
Номер охранного документа: 0002668981
Дата охранного документа: 05.10.2018
27.10.2018
№218.016.9776

Биполярно-полевой буферный усилитель для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники. Технический результат заключается в повышении стабильности статического режима и низком уровне шумов при работе устройства в диапазоне низких температур с высокой линейностью амплитудной характеристики. Биполярно-полевой буферный...
Тип: Изобретение
Номер охранного документа: 0002670777
Дата охранного документа: 25.10.2018
23.11.2018
№218.016.a066

Буферный усилитель с дифференцирующей цепью коррекции переходного процесса

Изобретение относится к буферным усилителям с дифференцирующей цепью коррекции переходного процесса. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения и уменьшении времени установления переходного процесса в БУ. В усилитель введены первый и...
Тип: Изобретение
Номер охранного документа: 0002673003
Дата охранного документа: 21.11.2018
14.12.2018
№218.016.a6e8

Быстродействующий буферный усилитель

Изобретение относится к области радиотехники. Технический результат - повышение максимальной скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса в буферном усилителе (БУ) при больших импульсных входных сигналах. Для этого предложен быстродействующий...
Тип: Изобретение
Номер охранного документа: 0002674885
Дата охранного документа: 13.12.2018
26.12.2018
№218.016.ab0f

Быстродействующий операционный усилитель

Изобретение относится к области радиотехники. Технический результат: повышение скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса. Для этого предложен операционный усилитель, который содержит четыре входных транзистора, первый двухполюсник,...
Тип: Изобретение
Номер охранного документа: 0002676014
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0db

Биполярно-полевой буферный усилитель

Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя - БУ), в структуре аналоговых микросхем различного функционального назначения, например операционных...
Тип: Изобретение
Номер охранного документа: 0002677401
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b0e7

Входной каскад быстродействующего операционного усилителя

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в различных аналоговых микросхемах. Технический результат заключается в расширении диапазона активной работы входного дифференциального каскада, повышении максимальной скорости нарастания выходного напряжения...
Тип: Изобретение
Номер охранного документа: 0002677364
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b15d

Активный rc-фильтр

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве устройства частотной селекции в современных системах связи и телекоммуникации. Технический результат заключается в уменьшение влияния площади усиления применяемых операционных усилителей (ОУ) на...
Тип: Изобретение
Номер охранного документа: 0002677362
Дата охранного документа: 16.01.2019
16.02.2019
№219.016.bb79

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима при отрицательных температурах и изменении напряжений питания, также обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002679970
Дата охранного документа: 14.02.2019
+ добавить свой РИД