×
10.04.2014
216.012.af69

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОГО КАТАЛИЗАТОРА ОКИСЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области катализа. Описан способ приготовления биметаллического золотомедного катализатора окисления, включающий последовательные стадии нанесения предшественников металлов на носитель, и термообработки, в качестве предшественников золота и меди используют анионные и катионные комплексы, которые образуют при взаимодействии друг с другом малорастворимое соединение комплексной соли в соответствии с законом об электронейтральности. Технический результат - увеличение активности катализаторов. 6 з.п. ф-лы, 2 табл., 9 пр.

Изобретение относится к способу получения катализатора на твердых носителях нанесением на них твердых растворов металлов. Катализаторы могут быть использованы в различных областях катализа, например, для проведения фотокаталитических, электрокаталитических, каталитических и других реакций окисления.

Известно, что нанесение многокомпонентных металлических систем при приготовлении катализаторов имеет ряд преимуществ по сравнению с монокомпонентными за счет синергетического эффекта.

Известен катализатор, способ его приготовления и способ проведения реакции окисления оксида углерода в присутствии водорода [Заявка TW 201021912, B01D 53/62, 16.06.2010], где в качестве катализатора используют систему на основе наночастиц золота, нанесенных на смешанный оксид меди и титана. Реакцию проводят в реакторе с неподвижным слоем катализатора и отношением концентраций кислорода к СО в подаваемой в реактор смеси 0,5-5. Недостаток данного способа приготовления заключается в том, что он не обеспечивает селективного контакта атомов золота с атомами меди, в результате чего снижаются производительность и селективность катализаторов.

Наиболее близким способом приготовления является синтез биметаллических Au-Cu катализаторов на оксиде кремния [X.Liu, A.Wang, Т.Zhang, D.-S.Su, C.-Y.Mou // Catal. Today 160 (2011) 103-108] и мезопористом силикате SBA-15 [X.Liu, A.Wang, L.Liu, T.Zhang, C.-Y.Mou, J.-F.Lee // J.Catal. 278 (2011) 288-296].

Недостатком метода является высокая сложность и большое количество последовательных стадий приготовления:

- первичная модификация поверхности носителя;

- адсорбция комплекса золота;

- восстановление адсорбированного комплекса золота в растворе;

- адсорбция ионов меди;

- восстановление меди;

- в завершение проводится температурная обработка.

В связи с тем, что процедура восстановления золота проводится и перед нанесением меди, получаемые наночастицы на поверхности оксида кремния неоднородны по своему составу, что приводит к снижению производительности катализатора.

Известен способ (выбран в качестве прототипа) получения полиметаллических катализаторов (RU 2294240, B01J 23/56, 24.02.2005), заключающийся в нанесении полиметаллических катализаторов путем нанесения металлов на керамику, пластмассы, металлы, композитные материалы, оксиды переходных металлов, углеродный материал, включающий последовательные стадии нанесения предшественников, несущих катионную и анионную часть, и восстановления.

Недостатками указанного способа являются невозможность приготовить золотомедные биметаллические катализаторы с нужным соотношением золота к меди из-за использования предшественников определенных составов, указанных в патенте, а также наличие трудноудаляемых компонентов в составе предшественников (например, таких как роданид ион, галогенид ионы - фтор, хлор, бром, йод). Это может приводить к снижению активности катализаторов.

Изобретение решает задачу по созданию золотомедного катализатора, обладающего более высокой активностью, чем известные катализаторы.

Суть способа приготовления катализатора окисления состоит в том, что исходный носитель обрабатывают растворами солей таким образом, что на носителе осаждается малорастворимое координационное соединение, состоящие из комплексного катиона и комплексного аниона (далее комплексные соли). В качестве катиона, например, могут быть использованы соединения [Au(pap)2]+, [Au(en)2]3+, [Au(dien)Cl]2+, [Au(HDMG)2]+, [Cu(dien)Cl]+, [Cu(en)2]2+, где: pap=2-фенилазофенил, en=этилендиамин, dien=диэтилентриамин, HDMG=однозарядный анион диметилглиоксима HON=C(-CH3)-C(-CH3)=NO-, а в качестве аниона, например, могут быть использованы соединения, [Au(CN)4]-, [Cu(EDTA)]2-, [Cu(CN)4]3-, [Cu(Ox)2]2-, где: EDTA=этилендиаминтетраацетат, Ox=оксалат.

В дальнейшем проводят термообработку нанесенной комплексной соли в восстановительной, инертной или окислительной среде.

Массовое соотношение наносимого катионного предшественника к носителю может составлять от 0,0001 до 0,1. Массовое соотношение наносимого анионного предшественника к носителю может составлять от 0,0001 до 0,1.

Обработку носителя растворами солей золота и меди можно проводить в любой последовательности, например, вначале на носитель наносят катионную часть, а затем анионную, или вначале на носитель наносят анионную часть, а затем катионную.

Температурную обработку носителя с образовавшейся двойной комплексной солью осуществляют в при температуре выше 40°C.

В качестве носителей могут выступать оксиды переходных и редкоземельных металлов, предпочтительно церия, алюминия, циркония, кремния.

Предлагаемый способ приготовления биметаллического золотомедного катализатора окисления через образование двойной комплексной соли на поверхности носителя позволяет максимально упростить процесс его приготовления и достичь селективного образования высокодисперсных биметаллических медно-золотых частиц на поверхности носителя.

Нет опубликованных данных о получении метастабильных твердых растворов металлов данной дисперсности на носителях иными способами. Способ отличается тем, что после восстановительной, инертной или окислительной обработки на поверхности катализаторов образуются одна или несколько фаз твердых растворов металлов или соединений интерметаллидов меди и золота.

Отличительной особенностью метода является высокая селективность образования биметаллических частиц на поверхности носителей, высокая степень дисперсности получающихся частиц, а также простота его выполнения, позволяющая проводить синтез обычной пропиткой материала уже сформированного носителя нужной формы и размеров, без применения сложных реагентов и процедур.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Приготовление катализатора на основе оксида церия, содержащего 3,4 мас.% Au и 1,6 мас.% Cu.

К 10,0 г носителя (CeO2) при комнатной температуре приливают, при тщательном перемешивании, 6,0 мл 0,29 М раствора [Au(En)2](NO3)3. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 6,0 мл 0,42 М раствора (NH4)2[Cu(Ox)2]·2H2O, нагретого до 90-95°C, (содержащего 150 мг (NH4)2Ox·H2O, необходимого для предотвращения образования труднорастворимого CuOx). Молярное соотношение Au:Cu на поверхности носителя составляет 2:3. Затем пропитанный носитель подвергают сушке при температуре 80-90°C в течение 12-16 ч.

Термообработку образца проводят в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 400°C, после чего катализатор выдерживают при 400°C в течение 2 ч.

Пример 2.

Приготовление катализатора на основе оксида кремния, содержащего 2,0 мас.% Au и 0,3 мас.% Cu.

К 10,0 г носителя (SiO2) при комнатной температуре приливают при тщательном перемешивании 10,0 мл 0,10 М раствора [Au(pap)2]ClO4. Далее пропитанный носитель сушат при температуре 60-80°C в течение 20-24 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 10,0 мл 0,05 М раствора (NH4)2[Cu(Ox)2]·2H2O, нагретым до 40-60°C, содержащим 50 мг (NH4)2Ox·H2O. Молярное соотношение Au:Cu на поверхности носителя составляет 2:1. Последующую термообработку проводят аналогично примеру 1.

Пример 3.

Приготовление катализатора на основе оксида циркония, содержащего 2,5 мас.% Au и 0,8 мас.% Cu.

К 10,0 г носителя (ZrO2) при комнатной температуре приливают, при тщательном перемешивании, 10,0 мл 0,13 М раствора [Au(dien)Cl]Cl2. Далее пропитанный носитель сушат при температуре 60-80°C в течение 20-24 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 10,0 мл 0,13 М раствора Na2[Cu(EDTA)]. Молярное соотношение Au:Cu на поверхности носителя составляет 1:1. Затем пропитанный носитель подвергают сушке при температуре 60-80°C в течение 20-24 ч.

Термообработку образца проводят в токе смеси 5 об.% H2 в Ar при скорости нагрева 2 град/мин до температуры 600°C, после чего катализатор выдерживают при 600°C в течение 1 ч. После охлаждения до комнатной температуры катализатор промывают 30 мл дистиллированной воды или раствора кислот (HCl, HNO3) низкой концентрации (менее 0.01 М) и сушат при температуре 120°C 3 ч.

Пример 4.

Приготовление катализатора на основе оксида кремния, содержащего 2,0 мас.% Au и 0,3 мас.% Cu.

К 10,0 г носителя (SiO2) при комнатной температуре приливают при тщательном перемешивании 10,0 мл 0,10 М раствора [Au(HDMG)2]Cl. Далее пропитанный носитель сушат при температуре 60-80°C в течение 20-24 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 10,0 мл 0,05 М раствора (NH4)2[Cu(Ox)2]·2H2O, нагретым до 40-60°C, содержащим 50 мг (NH4)2Ox·H2O. Молярное соотношение Au:Cu на поверхности носителя составляет 2:1. Последующую термообработку проводят аналогично примеру 1.

Пример 5.

Приготовление катализатора на основе оксида кремния, содержащего 3,4 мас.% Аu и 1,1 мас.% Сu.

К 10,0 г носителя (SiO2) при комнатной температуре приливают, при тщательном перемешивании, 10,0 мл 0,17 М раствора [Cu(dien)Cl]Cl. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 10,0 мл 0,17 М раствора Na[Au(CN)4]. Молярное соотношение Au:Cu в реакционной смеси составляло 1:1. Последующую термообработку проводят аналогично примеру 3.

Пример 6.

Приготовление катализатора на основе оксида кремния, содержащего 3,4 мас.% Au и 0,55 мас.% Cu.

К 10,0 г носителя (SiO2) при комнатной температуре приливают, при тщательном перемешивании, 10,0 мл 0,09 М раствора [Cu(en)2](NO3)2. Далее пропитанный носитель сушат при температуре 80-90°C в течение 12-16 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 10,0 мл 0,17 М раствора Na[Au(CN)2]. Молярное соотношение Au:Cu в реакционной смеси составляло 2:1. Последующую термообработку проводят аналогично примеру 3.

Пример 7.

Приготовление катализатора на основе оксида алюминия, содержащего 4,7 мас.% Au и 0,5 мас.% Cu.

К 10,0 г носителя (Al2O3) при комнатной температуре приливают, при тщательном перемешивании, 10,0 мл 0,24 М раствора [Au(pap)2]ClO4. Далее пропитанный носитель сушат при температуре 60-80°C в течение 20-24 ч. После сушки образец охлаждают до комнатной температуры и пропитывают (при перемешивании) 10,0 мл 0,08 М раствора K3[Cu(CN)4]. Молярное соотношение Au:Cu на поверхности носителя составляет 3:1. Последующую термообработку проводят аналогично примеру 3.

Примеры 8-9 иллюстрируют испытание катализаторов.

Активность предложенных катализаторов испытывают в реакции окисления CO в водородсодержащих газовых смесях. Эта реакция является заключительной стадией в процессе получения водорода в каталитическом химическом процессе из веществ-носителей водорода для питания топливных элементов. В качестве носителей водорода наиболее перспективны углеводороды, природный газ, спирты, диметиловый эфир и др. Это углеводородное сырье при помощи паровой и/или кислородной конверсии перерабатывают в водородсодержащую газовую смесь. Такая смесь обычно состоит из H2, CO2, N2, H2O и до ~1 об.% CO. Известно, что оксид углерода при концентрации больше 0.001 об.% (10 ppm) является ядом для топливного электрода. Именно поэтому такую водородсодержащую газовую смесь необходимо очищать от оксида углерода перед ее подачей в топливный элемент. Из всех существующих методов такой очистки наиболее перспективна очистка путем окисления оксида углерода.

Процесс очистки газовых смесей от оксида углерода проводят в проточном реакторе с одним слоем катализатора. Реактор представляет собой кварцевую трубку с внутренним диаметром 3 мм. Слой состоит из 0,050-0,250 г катализатора. В качестве катализаторов берут биметаллические медно-золотые образцы. Объемную скорость варьируют в интервале 1000-250000 ч-1, температуру слоя катализатора в интервале 20-400°C. Реакция протекает в интервале давлений 1-10 атм. Реакционная газовая смесь имеет состав, об.%: 0,01-66,6 CO, 0,005-33,3 O2, 0-99,985 H2, 0-99,985 CO2, 0-99,985 H2O, 0-99,985 N2, 0-5 Ch3OH, 0-5 CH3OCH3, 0-5 CH4.

Пример 8.

Процесс очистки газовых смесей от оксида углерода осуществляют в проточном реакторе на 5 мас.% Au2Cu3/CeO2 катализаторе, приготовленном по примеру 1, при объемной скорости 260000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 CO, 1,5 O2, 97,5 H2. Полученные результаты приведены в таблице 1.

Таблица 1
Температура,°C Концентрация CO на выходе из реактора, об.%
190 0,001
200 0,001
220 0,003

Пример 9.

Процесс, аналогичный примеру 6, проводят на 5 мас.% Au2Cu3/CeO2 катализаторе, приготовленном по примеру 1, при объемной скорости 260000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 CO, 1,5 O2, 10 H2O, 20 CO2, 67,5 H2. Полученные результаты приведены в таблице 2.

Таблица 2
Температура, °С Концентрация СО на выходе из реактора, об.%
170 0,001
180 0,0004
190 0,0006
200 0,001

Приведенные примеры демонстрируют высокую активность предлагаемых катализаторов, что позволяет эффективно снижать содержание CO в водородсодержащих газовых смесях до уровня ниже 10 ppm. Катализаторы имеют широкую возможность варьирования их химического состава. Предлагаемый способ и использование предлагаемых катализаторов позволяют существенно снизить температуру проведения процесса и уменьшить содержание благородных металлов в катализаторе.

Источник поступления информации: Роспатент

Показаны записи 41-41 из 41.
29.06.2019
№219.017.a19b

Способ оценки функционального состояния сердца

Изобретение относится к медицине и может быть использовано для оценки функционального состояния сердца. Для этого во время диагностической процедуры по медицинским показаниям берут методом биопсии образцы ткани сердца, в котором определяют содержание химических элементов таблицы Д.И.Менделеева,...
Тип: Изобретение
Номер охранного документа: 0002466389
Дата охранного документа: 10.11.2012
Показаны записи 41-50 из 55.
01.03.2019
№219.016.ca01

Способ приготовления нанесенных полиметаллических катализаторов (варианты)

Изобретение относится к способам получения катализаторов окисления на любых твердых носителях нанесением на них твердых растворов металлов. Катализаторы могут быть использованы в различных областях катализа, например, для проведения фотокаталитических, электрокаталитических, каталитических и...
Тип: Изобретение
Номер охранного документа: 0002294240
Дата охранного документа: 27.02.2007
20.03.2019
№219.016.e721

Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома...
Тип: Изобретение
Номер охранного документа: 0002322291
Дата охранного документа: 20.04.2008
10.04.2019
№219.017.05db

Катализатор, способ его приготовления и способ получения синтез-газа

Изобретение относится к катализаторам автотермической конверсии углеводородного топлива для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике. Описан катализатор получения синтез-газа,...
Тип: Изобретение
Номер охранного документа: 0002320408
Дата охранного документа: 27.03.2008
29.04.2019
№219.017.41c3

Способ очистки водородсодержащих газовых смесей от оксида углерода (варианты)

Изобретение может быть использовано для очистки от оксида углерода обогащенных водородом газовых смесей. Процесс проводят в две стадии при температуре не ниже 90°С и давлении не ниже 1 атм. Очистку в первой из стадий проводят путем селективного окисления оксида углерода кислородом и/или...
Тип: Изобретение
Номер охранного документа: 0002359741
Дата охранного документа: 27.06.2009
29.05.2019
№219.017.69a0

Устройство предпускового подогрева двигателя, автономного отопления, генерации водородсодержащего газа и способ работы устройства

Изобретения относятся к области машиностроения, а именно к предпусковому подогревателю двигателя и способу работы указанного устройства. Предпусковой подогреватель двигателя, автономного отопления, генерации водородсодержащего газа состоит из системы запуска, конвертора, теплообменника, системы...
Тип: Изобретение
Номер охранного документа: 0002440507
Дата охранного документа: 20.01.2012
30.05.2019
№219.017.6bd8

Бифункциональный катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии диметилового эфира (ДМЭ) с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002286210
Дата охранного документа: 27.10.2006
30.05.2019
№219.017.6bdb

Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода

Изобретение относится к катализатору, способу его приготовления и процессу каталитической очистки от оксида углерода обогащенных водородом газовых смесей. Описан катализатор очистки водородсодержащих газовых смесей от оксида углерода путем метанирования оксида углерода, содержащий...
Тип: Изобретение
Номер охранного документа: 0002323044
Дата охранного документа: 27.04.2008
30.05.2019
№219.017.6bdc

Катализатор, способ его приготовления и способ получения водорода

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии метанола с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов различного назначения....
Тип: Изобретение
Номер охранного документа: 0002431526
Дата охранного документа: 20.10.2011
19.06.2019
№219.017.87ac

Катализатор очистки водородсодержащей газовой смеси от со и способ его приготовления

Изобретение относится к области катализаторов, в частности предназначенных для процессов очистки водородсодержащей газовой смеси от СО путем селективного каталитического окисления СО кислородом воздуха. Описан катализатор очистки водородсодержащей газовой смеси от СО, включающий металлическую...
Тип: Изобретение
Номер охранного документа: 0002336947
Дата охранного документа: 27.10.2008
27.06.2019
№219.017.9930

Способ приготовления катализатора и способ очистки газовых смесей от оксида углерода

Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Описан способ приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, в котором синтез катализатора ведут через получение полимерного...
Тип: Изобретение
Номер охранного документа: 0002381064
Дата охранного документа: 10.02.2010
+ добавить свой РИД