×
27.03.2014
216.012.aefe

Результат интеллектуальной деятельности: РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам. Радиометр с трехопорной модуляцией содержит последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, у которого на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией. Также устройство содержит «горячую» и «холодную» эталонные согласованные нагрузки и конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены с входами блока вычисления множительно-делительной операции, и нагревательный элемент. В устройство введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен к входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен к входу усилителя высокой частоты. Направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу. Технический результат - повышение точности измерений. 3 ил.
Основные результаты: Радиометр с трехопорной модуляцией, содержащий последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, у которого на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией, также включающий «горячую» эталонную согласованную нагрузку, выход которой соединен со входом СВЧ-переключателя, и «холодную» эталонную согласованную нагрузку, конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены с входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки, отличающийся тем, что дополнительно введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен к входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен к входу усилителя высокой частоты, направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу.

Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам для техники дистанционного зондирования земной поверхности и мирового океана, в частности к СВЧ-радиометрии.

Изобретение может быть использовано для измерения и регистрации радиояркостных температур собственного радиотеплового излучения подстилающей поверхности и может применяться в народном хозяйстве.

Известны схемы модуляционных радиометров, в которых применяется модуляция и непрерывная внутренняя калибровка по двум опорным источникам с различными температурами. [Е.Д.Бирюков, В.А.Плющев, И.А.Сидоров. Радиометр. АС №1734468, приоритет от 19.10.1989 г. МКИ: G01R 29/08]

Из известных устройств наиболее близким [1] можно считать радиометр с двухопорной модуляцией [Авторы: О.Б.Белоусов, В.А.Плющев, И.А.Сидоров, С.И.Галаган. Обработка информации тепловой пассивной РЛС средствами программируемой логики. Сборник трудов 57 Научно-технической конференции Государственного образовательного учреждения высшего профессионального образования. Московский государственный институт радиотехники, электроники и автоматики (Технический университет), Часть третья, Технические науки, Москва, 2008 г., стр.19-24], содержащий последовательно соединенные, приемную антенну, являющуюся входом устройства, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией, а также «горячую» и «холодную» эталонные согласованные нагрузки, выходы которых соединены со входами СВЧ-переключателя, и конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены со входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки.

Основным признаком технического решения является то, что благодаря наличию двух эталонных согласованных нагрузок с различными температурами, процесс модуляции совмещен с процессом непрерывной внутренней калибровки так, что на выходе радиометра непрерывно регистрируются значения антенных температур, вычисленные по формуле (1):

,

где ТГ и ТХ - значения температур «горячей» и «холодной» эталонных согласованных нагрузок, измеренных термодатчиками, UA-UX и UГ-UХ - выходные сигналы синхронного детектора, пропорциональные соответственно разности антенной температуры и температуры «холодного» эталона и разности температур «горячего» и «холодного» эталонов.

Однако недостатком описанного радиометра с двухопорной модуляцией является то, что точность измерения антенной температуры зависит от величины измеряемой температуры.

Антенная температура является функцией пяти переменных:

Каждая из пяти переменных в правой части формулы изменяется с определенной абсолютной погрешностью ΔUA, ΔUГ, ΔUХ, ΔТГ, ΔТХ. В соответствии с [2] абсолютная погрешность измерения антенной температуры определяется формулой:

Учтено, что температура горячего внутреннего эталона всегда выше температуры холодного внутреннего эталона. Так как измерения температуры термодатчиками существенно точнее, чем измерения, сделанные при помощи радиометра, то двумя последними членами в формуле (3) в первом приближении можно пренебречь. Таким образом, получим:

Абсолютная погрешность измерения напряжения на выходе синхронного детектора определяется чувствительностью СВЧ-радиометра [3]:

,

где ТШ - температура шума приемника, Δf - ширина полосы СВЧ-усилителя, τ - полное время накопления сигнала.

Так как время накопления сигнала UA в два раза больше, чем UГ и UХ, то абсолютная погрешность измерения UA:

.

Используя формулу (1), выразим значения напряжений через соответствующие им радиояркостные температуры, тогда формула (4) примет вид:

,

где KU - величина, обратная крутизне вольт-градусной характеристики радиометра.

Из формулы (7) видно, что абсолютная погрешность измерений остается постоянной, когда антенная температура находится в интервале между температурами внутренних эталонов и линейно возрастает по мере удаления антенной температуры от температур эталонов за пределами этого интервала. График зависимости абсолютной погрешности измерений от значения антенной температуры, рассчитанный по формуле (7) для реальных значений температур эталонов, представлен на Фиг.1.

Таким образом, для уменьшения абсолютной погрешности измерения радиояркостных температур, например радиояркостных температур открытых водоемов, необходимо использовать «холодный» внутренний эталон с радиояркостной температурой, близкой к температуре открытых водоемов. В качестве такого эталона возможно использование реликтового излучения небесной сферы, но такой «эталон» не является «внутренним» и поэтому не рассматривается, или излучения согласованной нагрузки, охлажденной до температуры жидкого азота или жидкого гелия, но применение криогенной техники существенно ухудшает потребительские свойства радиометра.

Наиболее привлекательными источниками низкотемпературного шума являются твердотельные полупроводниковые генераторы (см. [4]), однако их применение в качестве эталонной нагрузки ограничено из-за непредсказуемости значения температуры генерируемого ими шума. Этот недостаток может быть устранен путем специальной процедуры калибровки шума твердотельного полупроводникового генератора по известным стабильным эталонам. Для реализации этого метода необходимо изменить схему радиометрического приемника.

Технический результат, который может быть получен с помощью этого изобретения, заключается в повышении точности измерения радиояркостных температур в интервале измеряемых температур от абсолютного нуля до температуры окружающей среды, путем применения нестабильного твердотельного источника низкотемпературного шума с калибровкой его по известным стабильным источникам шума.

Заявленный технический результат достигается тем, что в известный радиометр с двухопорной модуляцией, содержащий последовательно соединенные приемную антенну, являющуюся входом устройства, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией. Радиометр также включает «горячую» эталонную согласованную нагрузку, выход которой соединен со входом СВЧ-переключателя, и «холодную» эталонную согласованную нагрузку и конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены со входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки. Дополнительно введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя вместо «холодной» согласованной нагрузки, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен ко входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен ко входу усилителя высокой частоты, направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу.

Предлагаемый радиометр удовлетворяет критериям новизна и изобретательского уровня, так как присущие ему существенные признаки не содержатся в известных устройствах и в них не реализуется заявленный положительный эффект.

Изобретение будет понятно из следующего описания и приложенных к нему чертежей.

На фигуре 2 изображена схема радиометра с трехопорной модуляцией.

Предлагаемый радиометр содержит приемную антенну 1, трехвходовый СВЧ-переключатель 2, СВЧ-циркулятор 3, усилитель высокой частоты 4, квадратичный детектор 5, усилитель низкой частоты 6, синхронный фильтр 7, синхронный детектор 8, блок вычисления множительно-делительной операции 9, регистратор 10, прибор управления модуляцией 16, «горячую» эталонную согласованную нагрузку 11, «холодную» эталонную согласованную нагрузку 14, термодатчик «горячей» эталонной согласованной нагрузки 12, термодатчик «холодной» эталонной согласованной нагрузки 15, нагревательный элемент «горячей» эталонной согласованной нагрузки 13, твердотельный источник «холодного» шума 17, термодатчик твердотельный источника «холодного» шума 18.

Предлагаемый радиометр с трехопорной модуляцией работает следующим образом. Как и в радиометре с двухопорной модуляцией, прием сигнала производится периодически, с периодом модуляции, например, один килогерц. За время одного периода модуляции половина периода модуляции принимается и накапливается сигнал от антенны, для чего СВЧ-переключатель по управляющему сигналу от прибора управления модуляцией переключает сигнал с выхода антенны на первый вход СВЧ-циркулятора и далее с выхода СВЧ-циркулятора - на вход усилителя высокой частоты. Аналогично, на время, равное одной четверти периода модуляции, СВЧ-переключатель переключает на вход СВЧ-циркулятора сигнал от «горячей» эталонной согласованной нагрузки и на время, равное одной четверти периода модуляции, СВЧ-переключатель переключает на вход СВЧ-циркулятора сигнал от твердотельного источника «холодного» шума. При этом, за время накопления сигналов τ на выходе синхронного детектора формируются два сигнала: UA-U и UХШ-UГ, первый пропорционален разности антенной температуры и шумовой температуры источника «холодного» шума и второй пропорционален разности температуры «горячей» эталонной согласованной нагрузки и шумовой температуры источника «холодного» шума. Аналогично радиометру с двухопорной модуляцией в блоке множительно-делительной операции производится вычисление антенной температуры по формуле (8):

В отличие от известной схемы радиометра с двухопорной модуляцией, где значение шумовой температуры «холодной» эталонной согласованной нагрузки известно в любой момент времени, так как непрерывно измеряется при помощи соответствующего термодатчика, в радиометре с трехопорной модуляцией значение шумовой температуры твердотельного источника «холодного» шума ТХШ априорно не известно. Поэтому в радиометре с трехопорной модуляцией для измерения значения шумовой температуры твердотельного источника «холодного» шума ТХШ периодически, с периодом, существенно большим периода модуляции, применяется процедура калибровки твердотельного источника «холодного» шума, в ходе которой измеряется и запоминается значение ТХШ - шумовой температуры твердотельного источника «холодного» шума. В промежутках между калибровками твердотельного источника «холодного» шума шумовая температура ТХШ считается постоянной и ее значение используется для вычисления антенной температуры по формуле (8).

Экспериментально установлено, что наибольшее влияние на величину шумовой температуры твердотельного источника «холодного» шума оказывает его термодинамическая температура. Поэтому калибровка твердотельного источника «холодного» шума производится при первом включении радиометра и всякий раз, когда термодинамическая температура твердотельного источника «холодного» шума, измеренная соответствующим термодатчиком, изменяется на заданную величину, для чего выход термодатчика твердотельного источника «холодного» шума подключен к входу прибора управления модуляцией.

Процедура калибровки твердотельного источника «холодного» шума осуществляется следующим образом: на время одного периода модуляции половина периода модуляции принимается и накапливается сигнал от источника «холодного» шума, для чего СВЧ-переключатель по управляющему сигналу от прибора управления модуляцией переключает сигнал с выхода источника «холодного» шума на первый вход СВЧ-циркулятора и далее с выхода СВЧ-циркулятора - на вход усилителя высокой частоты. Аналогично, на время, равное одной четверти периода модуляции, СВЧ-переключатель переключает на вход СВЧ-циркулятора сигнал от «горячей» эталонной согласованной нагрузки и на время, равное одной четверти периода модуляции, СВЧ-переключатель переводится в состояние «выключено», блокируя прохождение сигналов на выход переключателя от любого из трех входов. При этом сигнал от «холодной» эталонной согласованной нагрузки, подключенной ко второму входу СВЧ-циркулятора, проходит от второго входа СВЧ-циркулятора в направлении циркуляции до первого ввода СВЧ-циркулятора, отражается от него и в направлении циркуляции проходит на выход СВЧ-циркулятора и далее - на вход усилителя высокой частоты.

За время накопления сигналов на выходе синхронного детектора формируются два сигнала: UХШ-UХ и UГ-UХ, первый пропорционален разности шумовой температуры твердотельного источника «холодного» шума и шумовой температуры источника «холодного» шума и второй пропорционален разности температуры «горячей» эталонной согласованной нагрузки и шумовой температуры «холодной» эталонной согласованной нагрузки. Точность измерения шумовой температуры согласно формуле (5) зависит от времени накопления сигналов. Чем больше время накопления, тем точнее измеряется значение шумовой температуры. При калибровке твердотельного источника «холодного» шума время накопления выбирается значительно больше времени накопления антенного сигнала τ, так чтобы точность измерения шумовой температуры была бы не хуже наперед заданной величины. Значение шумовой температуры твердотельного источника «холодного» шума вычисляется и запоминается в блоке множительно-делительной операции по формуле (9):

,

где ТГ и ТХ - значения термодинамических температур эталонных согласованных нагрузок, измеренные соответствующими термодатчиками. Вычисленное и запомненное значение шумовой температуры твердотельного источника «холодного» шума ТХШ используется для вычисления антенной температуры ТА по формуле (8).

На фигуре 3 показан график зависимости погрешности измерения антенной температуры ΔТА от значений ТА, полученный в процессе моделирования, с использованием формулы 8 для вычисления данных.

В остальном радиометр с трехопорной модуляцией работает по известной схеме.

Использование изобретения позволит повысить точность измерения радиояркостной температуры подстилающей поверхности.

Литература

1. О.Б.Белоусов, В.А.Плющев, И.А.Сидоров, С.И.Галаган. Обработка информации тепловой пассивной РЛС средствами программируемой логики. Сборник трудов 57 Научно-технической конференции Государственного образовательного учреждения высшего профессионального образования. Московский государственный институт радиотехники, электроники и автоматики (Технический университет). Часть третья. Технические науки, Москва, 2008 г., стр.19-24

2. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. М.: Наука, 1972. - 256 с.

3. Есепкина Н.А., Корольков Д.В., Парийский Ю.Н. Радиотелескопы и радиометры. М.: Наука, 1973. - 416 с.

4. Prater R.M., Williams D.R. An active "cold" noise source. //IЕЕЕ transactions on microwave theory and techniques. - 1981, vol.29, is.4.

Радиометр с трехопорной модуляцией, содержащий последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, у которого на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией, также включающий «горячую» эталонную согласованную нагрузку, выход которой соединен со входом СВЧ-переключателя, и «холодную» эталонную согласованную нагрузку, конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены с входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки, отличающийся тем, что дополнительно введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен к входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен к входу усилителя высокой частоты, направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу.
РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ
РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ
РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ
Источник поступления информации: Роспатент

Показаны записи 311-320 из 404.
11.10.2018
№218.016.8f9e

Композиция для светопоглощающего покрытия

Изобретение относится к покрытиям, обладающим способностью поглощать световое излучение определенного диапазона частот. Композиция покрытия включает в себя неорганический пигмент, полимерное связующее, отвердитель, растворители, и имеет следующий состав, в вес. %: уретановый каучук 7-10,...
Тип: Изобретение
Номер охранного документа: 0002669097
Дата охранного документа: 08.10.2018
11.10.2018
№218.016.8fbf

Сопловой аппарат реверсивной турбины

Сопловой аппарат реверсивной турбины включает сопловой аппарат прямого хода, расположенный на нижнем ярусе турбины, сопловой аппарат заднего хода, расположенный в верхнем ярусе турбины, и промежуточный корпус. На внешней стороне промежуточного корпуса закреплены секторы соплового аппарата...
Тип: Изобретение
Номер охранного документа: 0002669223
Дата охранного документа: 09.10.2018
11.10.2018
№218.016.901f

Способ определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом

Изобретение относится к области морского транспорта и способам проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Способ включает приготовление в ледовом бассейне ледяных полей, имитирующих различные ледовые условия,...
Тип: Изобретение
Номер охранного документа: 0002669158
Дата охранного документа: 08.10.2018
17.10.2018
№218.016.92e3

Источник питания для станций безобмоточного размагничивания кораблей

Изобретение относится к области размагничивания кораблей. Источник питания для станций безобмоточного размагничивания кораблей содержит неуправляемый трехфазный источник питания переменного тока, зарядное устройство, емкостной накопитель энергии, датчик напряжения, мостовой коммутатор, датчик...
Тип: Изобретение
Номер охранного документа: 0002669761
Дата охранного документа: 15.10.2018
28.10.2018
№218.016.97a8

Способ получения n-изопропил-n'-фенил-п-фенилендиамина

Изобретение относится к области органической химии, конкретно к способу получения N-изопропил-N'-фенил-п-фенилендиамина путем алкилирования п-аминодифениламина. Способ характеризуется тем, что в качестве алкилирующего агента используют изопропилбромид, а в качестве акцептора для связывания...
Тип: Изобретение
Номер охранного документа: 0002670975
Дата охранного документа: 26.10.2018
01.11.2018
№218.016.988b

Грузовая пневматическая шина радиального типа

Изобретение относится к автомобильной промышленности. Грузовая пневматическая шина радиального типа с протектором, металлокордным каркасом, брекерной конструкцией содержит четыре либо три пересекающихся под углом слоя брекера (1) из высокопрочных стальных кордов. По меньшей мере два слоя...
Тип: Изобретение
Номер охранного документа: 0002671112
Дата охранного документа: 29.10.2018
01.11.2018
№218.016.989e

Грузовая цельнометаллокордная пневматическая шина с усиливающим бандажом

Изобретение относится к автомобильной промышленности. Грузовая цельнометаллокордная пневматическая радиальная шина с протектором, металлокордным каркасом содержит три слоя брекера из высокопрочных стальных кордов со структурой (3×0,20+6×0,35) и плотностью 65 нитей на дециметр и усиливающий...
Тип: Изобретение
Номер охранного документа: 0002671111
Дата охранного документа: 29.10.2018
26.12.2018
№218.016.aaf9

Способ изготовления утоньшенной двухспектральной фоточувствительной сборки

Изобретение относится к технологии изготовления полупроводниковых двухспектральных гибридизированных сборок и может использоваться для создания матричных фотоприемников (МФП) различного назначения. Изобретение решает задачу изготовления утоньшенной двухспектральной фоточувствительной сборки (УД...
Тип: Изобретение
Номер охранного документа: 0002676052
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.acab

Способ улучшения адгезии индиевых микроконтактов с помощью ультразвуковой обработки

Использование: для изготовления индиевых микроконтактов в матричных фотоприемниках. Сущность изобретения заключается в том, что способ улучшения адгезии индиевых микроконтактов с помощью ультразвуковой обработки на полупроводниковых пластинах с матрицами БИС считывания или фотодиодными...
Тип: Изобретение
Номер охранного документа: 0002676222
Дата охранного документа: 26.12.2018
11.01.2019
№219.016.ae8b

Способ получения n-фенил-2-нафтиламина

Изобретение относится к усовершенствованному способу получения N-фенил-2-нафтиламина. N-фенил-2-нафтиламин применяется как термостабилизатор резин на основе натурального и синтетических каучуков общего назначения, в качестве антиоксиданта для стабилизации полиэтилена и добавки к...
Тип: Изобретение
Номер охранного документа: 0002676692
Дата охранного документа: 10.01.2019
Показаны записи 311-320 из 325.
04.04.2019
№219.016.fc16

Сканирующая гибридная зеркальная антенна

Изобретение относится к гибридной зеркальной сканирующей антенне для многорежимного космического радиолокатора с синтезированной апертурой и предназначена для выполнения задачи обзора заданной зоны. АФАР-облучатель имеет апертуру с плоской центральной частью перпендикулярной фокальной оси...
Тип: Изобретение
Номер охранного документа: 0002392703
Дата охранного документа: 20.06.2010
19.04.2019
№219.017.1d96

Способ автоматического группового целераспределения истребителей с учетом возможного выбывания участников

Изобретение относится к способу автоматического группового целераспределения истребителей с учетом возможного выбывания участников, который заключается в том, что для каждого перехватчика формируют функционал эффективности перехвата, путем решения множества численных уравнений получают...
Тип: Изобретение
Номер охранного документа: 0002684963
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.410a

Многоканальный радиотермограф

Изобретение относится к области радиотехники и может быть использовано для измерения радиотеплового излучения тел, в частности в медицине, для измерения температурного поля внутренних тканей человека. Многоканальный радиотермограф содержит N антенн, соединенных с N СВЧ-выключателями,...
Тип: Изобретение
Номер охранного документа: 0002310876
Дата охранного документа: 20.11.2007
29.04.2019
№219.017.44d1

Способ скрытного самонаведения самолетов на воздушные объекты

Изобретение относится к области приборостроения и может быть использовано в системах самонаведения летательных аппаратов. Технический результат - расширение функциональных возможностей. Для достижения данного результата траектория наводимого летательного аппарата все время находится в секторе...
Тип: Изобретение
Номер охранного документа: 0002408845
Дата охранного документа: 10.01.2011
01.05.2019
№219.017.47fe

Способ двухэтапного ранжирования воздушных целей по степени опасности в радиолокационных информационно-управляющих системах

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем. Достигаемый технический результат: повышение достоверности ранжирования воздушных целей при решении задач многоцелевого...
Тип: Изобретение
Номер охранного документа: 0002686482
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4eb3

Способ распознавания надводных кораблей на взволнованной морской поверхности

Способ распознавания надводных кораблей основан на сопоставлении информативных признаков наблюдаемых кораблей, полученных по их радиолокационным изображениям с эталонными признаками, соответствующими определенным классам надводных кораблей. Сущность способа заключается в том, что формирование...
Тип: Изобретение
Номер охранного документа: 0002423722
Дата охранного документа: 10.07.2011
29.05.2019
№219.017.6596

Способ обнаружения и определения координат искомого объекта

Изобретение относится к способам радиолокационного обнаружения на местности малоразмерных объектов. Достигаемый технический результат - повышение оперативности и точности определения геодезических координат малоразмерных объектов. Сущность изобретения состоит в том, что в способе лоцирования,...
Тип: Изобретение
Номер охранного документа: 0002392635
Дата охранного документа: 20.06.2010
04.06.2019
№219.017.7342

Способ автоматического группового целераспределения истребителей с учетом приоритета целей

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА. Предлагаемый способ позволяет определить...
Тип: Изобретение
Номер охранного документа: 0002690234
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.83d1

Приемная мультипликативная фар

Изобретение относится к антенной технике и может быть использовано в системах связи и радиолокации. Техническим результатом изобретения является получение высокого коэффициента усиления антенной решетки при низком уровне боковых лепестков (УБЛ) диаграммы направленности (ДН). Приемная...
Тип: Изобретение
Номер охранного документа: 0002691672
Дата охранного документа: 17.06.2019
+ добавить свой РИД