×
27.03.2014
216.012.ae7e

Результат интеллектуальной деятельности: ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода. Твердооксидный композитный материал для мембран электрохимических устройств содержит титанато-феррит стронция и представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce(SmSr)O - xSrTiFeO, где x=0,25; 0,50; 0,75. Материалы обладают свойствами, характерными для индивидуальных фаз. Технический результат - повышение устойчивости материала в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности. 1 табл., 13 ил.
Основные результаты: Твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce(SmSr)O - xSrTiFeO, где х=0,25; 0,50; 0,75.

Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, которые могут быть использованы в высокотемпературных электрохимических устройствах для получения водорода и/или кислорода.

Известен твердооксидный материал на основе оксида церия, содопированный стронцием и самарием Ce0.8(Sm1-xSrx)0.2O2-δ (Zhan Gao, Xingmin Liu, Bill Bergman, Zhe Zhao. Enhanced ionic conductivity of Ce0.8Sm0.2O2-δ by Sr addition // Journal of Power Sources 208 (2012) 225-231) [l]. Данный материал обладает высокой ионной проводимостью, значительной электронной проводимостью, стабильностью в восстановительной атмосфере, в связи с чем может применяться в качестве мембран для получения водорода. В тоже время данный материал характеризуется низким уровнем электронной (дырочной) проводимости в окислительной атмосфере, что делает невозможным применение данной керамики как мембраны для получения кислорода. Стоит отметить, что получение газоплотной керамики из известного материала (относительная плотность 98%) требует высоких температур спекания -1600°С.

Известный твердооксидный материал на основе титанато-феррита стронция SrTi1-xFexO3-x/2 (Svein Steinsvik, Renato Bugge, Jon Gjonnes, Johan Tafto, Truls Norby .The defect structure of SrTi1-xFexO3-y (x=0-0.8) investigated by electrical conductivity measurement and electron energy loss spectroscopy (EELS) J. Phis. Chem. Solids 58, 1997, 969-976) [3] характеризуется высокой ионно-электронной проводимостью как в окислительной, так и в восстановительной атмосфере и может использоваться в качестве мембран для получения кислорода и водорода. Спекание в плотную керамику (относительная плотность ~90%) известного материала протекает при невысоких температурах порядка 1200-1350°С. Исследование свойств данного материала выявили его недостаточную термодинамическую стабильность в восстановительной атмосфере, низкую устойчивость к термоциклированию и низкую механическую прочность.

Задача настоящего изобретения состоит в разработке твердооксидного материала мембран для получения водорода и/или кислорода с высокой термодинамической стабильностью и механической прочностью в условиях работы электрохимических устройств.

Для решения поставленной задачи заявлен твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ-xSrTi0.5Fe0.5O3-δ, где х=0,25; 0,50; 0,75.

Заявляемый твердооксидный материал характеризуется массовыми отношениями фазы перовскита к фазе флюорита 0,25:0,75; 0,50:0,50; 0,75:0,25, что соответствует составу (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5F0.5O3-δ, где х=0,25; 0,50; 0,75. При этом увеличение флюоритной фазы (содопированный оксид церия) в композите приводит к повышению термодинамической стабильности материала в восстановительной атмосфере, увеличению микротвердости керамики до 20%, росту электропроводности. Увеличение перовскитовой фазы (титанато-феррита стронция) в композите приводит к увеличению проводимости в окислительной области. Экспериментально установлено, что при массовом соотношений фазы перовскита к фазе флюорита 0,25:0,75; 0,50:0,50; 0,75:0,25 композитный материал обладает преимуществами обеих фаз, а именно: повышенной термодинамической стабильностью в восстановительной атмосфере, механической прочностью, а также высокой электронно-ионной проводимостью как в восстановительной, так и в окислительной атмосферах. Эффект увеличения проводимости композитных материалов по сравнению с аналогом и прототипом позволяет расширить область применения материалов. По сравнению с аналогом [1] - (Ce0.8(Sm1-xSrx)0.2O2-δ) - композитный материал обладает большей проводимостью в окислительной атмосфере, что позволяет использовать его в качестве мембран для получения кислорода. По сравнению с прототипом [2] - (SrTi0.5Fe0.5O3-δ) - заявленный материал обладает большей механической прочностью и стабильностью в восстановительной атмосфере, что позволяет более эффективно использовать его в качестве мембран для получения водорода. При значении x, близком к 0 или 1, данный эффект практически не проявляется, материалы обладают свойствами, характерными для индивидуальных фаз.

Технический результат, достигаемый заявленным изобретением, заключается в повышении устойчивости твердооксидного материала в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности.

Материалы на основе оксида церия, содопированного редкоземельным элементом (самарий, гадолиний) и стронцием, а также титанато-феррита стронция получали методом твердофазного синтеза из соответствующих оксидов и карбонатов. Синтезированные в течение 10 часов при температуре 1050°С порошки были смешаны в необходимых соотношениях и спечены при температурах 1350-1550°С в течение 3 часов с целью получения газоплотной композитной керамики.

Изобретение иллюстрируется следующим. На фиг.1 представлены рентгенограммы порошков заявленного твердооксидного композитного материала (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5Fe0.5O3-δ. Рентгенофазовый анализ показал, что спеченные образцы заявленного композитного материала являются двухфазными, состоящими из перовскитной (пространственная группа Pm3m) и флюоритной фаз (пространственная группа Fm3m). Фиг.2 иллюстрирует данные сканирующей электронной микроскопии для образца SrTi0.50.5O3-δ, при этом светлые зерна соответствуют фазе флюорита, более темные - перовскитной фазе. На фиг.3 представлены данные сканирующей электронной микроскопии для системы 0,25 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,75 SrTi0.5Fe0.5O3-δ. Фиг.4 иллюстрирует данные сканирующей электронной микроскопии для образца 0,5 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,5 SrTi0.5Fe0.5O3-δ. На фиг.5 представлены данные сканирующей электронной микроскопии для системы 0,75 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,25 SrTi0.5Fe0.5O3-δ. На фиг.6 - данные сканирующей электронной микроскопии для образца Ce0.8(Sm0.8Sr0.2)0.2O2-δ. На фиг.7 представлено распределение элемента - кислорода в композитном материале при х=0,50. На фиг.8 - распределение элемента титана в композитном материале при х=0,50. На фиг.9 - распределение элемента железа в композитном материале при х=0,50. На фиг.10 - распределение элемента стронция в композитном материале при х=0,50. На фиг.11 представлено распределение элемента церия в композитном материале при х=0,50. На фиг.12 представлено распределение элемента самария в композитном материале при х=0,50. Фиг.13 иллюстрирует зависимость электропроводности образцов базовых составов и композитной керамики в зависимости от парциального давления кислорода. На данной фигуре введены обозначения, соответствующие определенному составу исследуемых материалов: ■ - Ce0.8(Sm0.8Sr0.2)0.2O2-δ [1], ♦ - 0,75Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,25SrTi0.5Fe0.5O3-δ; ▲ - 0,50Ce0.8(Sm0.8Si0.2)0.2O2-δ - 0,50SeТi0.50.5O3-δ; ● -0,25Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,75SrTi0.5Fe0.5O3-δ, × - SrTi0.5Fe0.5O3-δ [2]). В таблице приведены результаты измерения микротвердости, электропроводности при 600, 900°С и температуры спекания образцов заявленного материала и образцов аналогов.

Из полученных данных изотермической зависимости электропроводности следует, что образцы заявленного материала обладают высокой электронной (дырочной) проводимостью в окислительной области по сравнению с аналогом [1], что обеспечено присутствием фазы перовскита; высокой ионно-электронной проводимостью и механической прочностью по сравнению с прототипом [2], что связано с присутствием фазы флюорита. Полученные свойства заявленного материала позволяют расширить область его применения.

Таким образом, разработан твердооксидный композитный материал, обладающий повышенной устойчивостью в восстановительной атмосфере, с высоким уровнем общей электропроводности и механической прочностью, пригодный для использования в качестве мембран для получения водорода и кислорода.

Твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce(SmSr)O - xSrTiFeO, где х=0,25; 0,50; 0,75.
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 103.
25.06.2018
№218.016.65c0

Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF...
Тип: Изобретение
Номер охранного документа: 0002658550
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.664b

Способ получения лигатур алюминия с цирконием

Изобретение относится к области цветной металлургии и может быть использовано при получении лигатуры Al-Zr электрохимическим способом, пригодной для промышленного производства. В качестве источника циркония используют оксид циркония, который смешивают с солевой смесью, содержащей оксид...
Тип: Изобретение
Номер охранного документа: 0002658556
Дата охранного документа: 21.06.2018
28.06.2018
№218.016.688a

Электрохимический способ получения порошков гексаборидов стронция и бария

Изобретение относится к способу получения порошков гексаборидов стронция и бария, включающему электролиз солевого расплава, содержащего смесь соли получаемого гексаборида с борсодержащим компонентом. При этом электролиз ведут с использованием молибденового катода и графитового анода. Способ...
Тип: Изобретение
Номер охранного документа: 0002658835
Дата охранного документа: 25.06.2018
25.10.2018
№218.016.9599

Способ модификации электродных материалов

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002670427
Дата охранного документа: 23.10.2018
01.11.2018
№218.016.9938

Способ получения керамики для извлечения гелия из газовых смесей

Изобретение относится к способам получения функциональной керамики, которая может использоваться для извлечения гелия из газовых смесей, включая природный газ, и разделения его изотопов. Способ включает прессование и обжиг тонкодисперсных порошков прекурсоров, в качестве которых используют...
Тип: Изобретение
Номер охранного документа: 0002671379
Дата охранного документа: 30.10.2018
24.01.2019
№219.016.b305

Потенциометрический датчик концентрации кислорода

Изобретение может быть использовано в электрохимии, металлургии, энергетике, автомобилестроении и других отраслях для определения содержания кислорода. Датчик содержит несущий элемент, выполненный в виде трубки из оксида алюминия. Несущий элемент с помощью стеклогерметика герметично соединен с...
Тип: Изобретение
Номер охранного документа: 0002677927
Дата охранного документа: 22.01.2019
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ed71

Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха и малых концентраций водорода в газовых смесях. Датчик содержит три диска из протонпроводящего твердого электролита, герметично соединенные между собой с образованием двух полостей между...
Тип: Изобретение
Номер охранного документа: 0002683134
Дата охранного документа: 26.03.2019
10.04.2019
№219.016.feea

Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте

Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава....
Тип: Изобретение
Номер охранного документа: 0002684356
Дата охранного документа: 08.04.2019
Показаны записи 71-72 из 72.
20.05.2023
№223.018.6707

Электродный материал для электрохимических устройств

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002757926
Дата охранного документа: 25.10.2021
29.05.2023
№223.018.7249

Клеточная линия меланомы кожи человека mel-alx-lp

Изобретение относится к области биотехнологии, а именно к получению клеточной линии. Полученная клеточная линия меланомы кожи человека mel-Alx-LP может быть использована как модельная система для изучения процессов канцерогенеза и метастазирования in vitro, поиска новых потенциальных мишеней в...
Тип: Изобретение
Номер охранного документа: 0002796357
Дата охранного документа: 22.05.2023
+ добавить свой РИД