×
20.03.2014
216.012.abe8

Результат интеллектуальной деятельности: СПОСОБ УДАЛЕНИЯ ГАЛОГЕНОВ ИЗ ЖИДКОГО АММИАКА

Вид РИД

Изобретение

№ охранного документа
0002509723
Дата охранного документа
20.03.2014
Аннотация: Изобретение относится к химической промышленности. Жидкий аммиак перемешивают с сильно основным ионообменником и пропускают через него, при температуре от минус 20 до 60°С и давлении от 1 до 25 бар в течение 1-36 часов. Содержание аммиака в жидком аммиаке более 98 мас.%, а галогенид-ионов, например ионов хлорида, от 10 частей на млн. до 200 частей на млн. Скорость потока жидкого аммиака от 10 до 120 (м аммиака)/(м ионообменника)/в час. Ионообменник уложен неподвижными слоями. Основной каркас сильно основного ионообменника представляет собой ковалентно-сшитую полимерную матрицу, образованную из сшитого полистирола или полиакрилата, а в качестве функциональных групп ионообменник содержит четвертичные аммонийные группы. Очищенный аммиак используют в способе получения аминов. Сокращается количество нежелательных побочных продуктов, снижается коррозия оборудования. 2 н. и 12 з.п. ф-лы, 2 пр.

Настоящее изобретение касается способа удаления галогенид-ионов из жидкого аммиака. Кроме того, данное изобретение касается применения аммиака, полученного согласно изобретению, в качестве исходного вещества при получении аминов.

Общие способы получения аммиака описаны, например, в издании Kirk-Othmer (Kirk-Othmer Encyclopedia of Chemical Technology, Electronic Edition, Last updated Feb. 1, 2008, John Wiley and Sons, Inc., в главе "Ammonia"), a также в издании Ullmann's Encyclopedia of Industrial Chemistry (Ullmann's Encyclopedia of Industrial Chemistry, Electronic Edition, Last updated February 1st, 2008, Wiley & Sons, Inc., в главе "Ammonia"). Как правило, аммиак получают из синтез-газа и азота. Монооксид углерода (СО), присутствующий в синтез-газе, обычно непосредственно перед проведением синтеза по реакции конверсии монооксида углерода переводится в диоксид углерода (СO2), который по большей части легко может быть отделен от газообразного водорода. Удаление остатка СO2, как правило, осуществляется абсорбционной очисткой газов с помощью растворителя, в котором CO2 имеет высокую растворимость. По окончании, как правило, еще осуществляется метанирование, при котором СО превращается в метан.

После взаимодействия водорода и азота с образованием аммиака газовый поток продуктов содержит, среди прочего, следы метана и инертных газов, таких как аргон или гелий. Эти вещества, как правило, удаляют с помощью дегазирования (продувки). Затем аммиак, как правило, конденсируют из потока газов или выделяют в виде водного раствора аммиака путем промывки газов водой в качестве растворителя. Жидкий аммиак, полученный при помощи конденсирования, как правило, доступен в продаже и имеет чистоту 99,9% масс. (остатки - вода и инертные газы).

Обычно дальнейшая очистка жидкого аммиака осуществляется путем того, что аммиак переводится в газообразное состояние и или отделяется от других примесей путем перегонки, или эти примеси удаляются при помощи введения газообразного аммиака в контакт с абсорбентами, или разлагаются каталитическим путем при помощи контактирования с катализатором.

В японской заявке на патент JP-A-2002037623 и заявке на патент США USA-20040091413 предлагается, например, способ удаления кислорода, монооксида углерода и воды из коммерчески доступного аммиака путем приведения газообразного аммиака в контакт с катализаторами, содержащими оксид марганца, и последующего пропускания газообразного аммиака через цеолиты. Удаление галогенид-ионов не предлагается.

В корейской заявке на патент KR-A-20020078608 газообразный аммиак пропускается через термически обработанный цеолит, чтобы удалить следы воды и масла, которые при последующем превращении аммиака в NF3 ведут к образованию нежелательных побочных продуктов. Удаление галогенид-ионов также не упоминается.

Способы очистки аммиака, описываемые в вопросах уровня техники, обладают тем недостатком, что аммиак должен переводиться в газообразное состояние, а затем снова должен быть сконденсирован. Этот процесс является энергетически невыгодным, а техническая реализация, как правило, требует больших капитальных вложений.

Поэтому задачей данного изобретения было предоставление способа, с помощью которого из жидкого аммиака могут быть удалены галогенид-ионы, без необходимости переведения аммиака в газообразное состояние. Подобный метод очистки является предпочтительным, в частности тогда, когда при хранении или транспортировке жидкого аммиака в этот аммиак попали загрязняющие примеси, которые должны быть удалены перед использованием аммиака в качестве исходного соединения в синтезе.

В заявке на патент Великобритании GB-A-862,180 предлагается удаление ионных примесей, например, хлоридов, из неводных растворителей, и среди прочего, из аммиака. В этом предложении показывается использование нерастворимых, имеющих открытую цепь (англ. «open-chain»), высокомолекулярных полимеров, которые содержат ионообменные группы. Благодаря пространственному строению полимера, имеющего открытую цепь, согласно данному предложению ионообменные группы, связанные с полимером, должны обладать лучшей доступностью, поскольку в традиционных ионообменных соединениях, в которых ионообменные группы встроены в полимерно-сшитую матрицу, ионообменные группы в неводных растворителях являются доступными только с трудом. В качестве подходящего полимера с открытой цепью, имеющего ионообменные группы, предлагается диметиламиноэтилцеллюлоза. В качестве особенно подходящего полимера с открытой цепью приводится модифицированная альфа-целлюлоза.

В заявке на патент Великобритании GB-A-862,180 показывается, что ионные загрязняющие примеси могут быть отмыты от ионообменной смолы путем промывания водным или неводным элюентом. Правда, в заявке на патент Великобритании GB-A-862,180 устанавливают, что для отмывания от полимеров с открытой цепью, имеющих катионные ионообменные группы, определенных ионных соединений, таких как четвертичные аммонийные группы, должны применяться специальные элюенты.

В основе данного изобретения также лежала задача разработать простой с точки зрения техники способ, с помощью которого из жидкого аммиака могут быть удалены галогенид-ионы. При условии, что материал, который применяется для удаления галогенид-ионов, должен был обладать высокой способностью поглощения ионных загрязняющих примесей, а, следовательно, давать возможность большого срока эксплуатации. К тому же, активность этого материала должна была восстанавливаться путем простой регенерации или соответственно обработки, так чтобы не было необходимости в сложной стадии регенерации или соответственно стадии обработки. Напротив, целью было предоставление способа, который требует незначительных капитальных затрат и может быть без труда реализован технически.

Согласно изобретению эта задача была решена с помощью способа удаления галогенид-ионов из жидкого аммиака, отличающегося тем, что жидкий аммиак вводят в контакт с ионообменником с сильными основными свойствами, причем основной каркас этого сильно основного ионообменника представляет собой ковалентно-сшитую полимерную матрицу.

В качестве жидкого аммиака в этом способе может использоваться жидкий аммиак, который содержит галогенид-ионы, такие как Сl-, Br-, F-, I-, предпочтительно Сl- и/или Br-, прежде всего, Сl-.

Концентрация галогенид-ионов в жидком аммиаке составляет, как правило, величину между 1 и 10000 частей на млн., предпочтительно между 2 и 1000 частей на млн., особенно предпочтительно между 5 и 500 частей на млн., прежде всего, предпочтительно между 10 и 200 частей на млн.

В качестве жидкого аммиака может использоваться обычный, доступный в продаже жидкий аммиак, например, аммиак с содержанием аммиака более 98% масс., предпочтительно более 99% масс. аммиака, предпочтительно более 99,5% масс., прежде всего, более 99,8% масс. аммиака.

Согласно изобретению используются сильно основные ионообменники.

Сильно основные анионообменные материалы образованы из жесткого основного каркаса (матрицы), который зафиксирован функциональными группами (ионообменными группами). Согласно изобретению жесткий основной каркас представляет собой ковалентно-сшитую полимерную матрицу. Такая ковалентно-сшитая полимерная матрица может быть получена путем конденсации или полимеризации бифункциональных мономеров с молекулами сшивающего агента. Так, например, ковалентно-сшитая полимерная матрица получается путем конденсации м-фенилендиамина с формальдегидом в качестве молекулы сшивающего агента. Предпочтительно ковалентно-сшитая полимерная матрица получается путем полимеризации мономеров, способных к полимеризации, с полимеризуемыми молекулами сшивающего агента. В качестве мономеров, способных к полимеризации, предпочтительно используются стирол и/или сложные эфиры акриловой кислоты или соответственно сложные эфиры метакриловой кислоты, особенно предпочтительно стирол.

В качестве полимеризуемых молекул сшивающего агента рассматриваются, например, дивинилбензол, сложные диэфиры акриловой кислоты, такие как этиленгликольакрилат, диэтиленгликольакрилат, бутандиолакрилат, или сложные виниловые эфиры акриловой кислоты. Предпочтительно в качестве полимеризуемых молекул сшивающего агента используется дивинилбензол.

В отдельном варианте исполнения изобретения используются сильно основные ионообменники, у которых полимерная матрица образована из сшитого полистирола или полиакрилата.

Жесткий каркас сильно основного ионообменника зафиксирован с помощью функциональных групп, которые имеют сильно основный характер. Предпочтительными функциональными группами являются четвертичные аммонийные группы. Примерами четвертичных аммонийных групп являются бензилтриметиламмонийная или бензилдиметилэтаноламмонийная группы.

Сильно основные ионообменники с четвертичными аммонийными группами, как правило, получаются путем полимеризации стирола и дивинилбензола и последующего хлорметилирования, а также дальнейшего взаимодействия хлорметилированного продукта превращения с третичными аминами, такими как триметиламин, триэтиламин или диметиламиноэтанол.

Сильно основные ионообменники предпочтительно получаются при помощи суспензионной полимеризации. При суспензионной полимеризации обычно мономеры в форме капелек диспергируются в водной фазе и, как правило, подвергаются отверждению с помощью растворенного в мономерах радикального инициатора путем повышения температуры или облучения.

Благодаря такому получению сильно основные ионообменные материалы обычно имеют размер частиц в области от 0,01 мм до 100 мм, предпочтительно от 0,1 мм до 10 мм, особенно предпочтительно от 0,2 до 5 мм.

Примерами сильно основных ионообменников, доступных в продаже, являются Ambersep® 900 ОН, Amberjet® 4200 Cl, Amberjet® 4400 Cl, Amberjet® 4600 Cl, Ambersep® 900 SO4, Amberiite® IRA 402 Cl, Amberlite® IRA 404 Cl, Amberlite® IRA 410 Cl, Amberlite® IRA 458 Cl, Amberlite® IRA 458 RF, Amberlite® IRA 478 RF, Amberlite® IRA 900 Cl, Amberlite® IRA 900 RF, Amberlite® IRA 910 Cl, Amberlite® IRA 958 Cl или Imac® HP555. Предпочтительными сильно основными ионообменниками являются Ambersep® 900 ОН, Amberjet® 4400 Cl (в ОН-форме), а также Amberlite® IRA 900 Cl (в ОН-форме).

Осуществление контакта жидкого аммиака с основным ионообменным материалом протекает при таком давлении и температурных условиях, при которых аммиак находится в жидкой форме. Предпочтительно температурный интервал выбирается от -20 до 60°С, предпочтительно от -10 до 40°С и особенно предпочтительно от 0 до 30°С. Давление обычно лежит в области от 1 до 25 бар, предпочтительно в области от 1 до 20 бар и особенно предпочтительно в области от 5 до 15 бар.

Осуществление контакта жидкого аммиака с основным ионообменником может выполняться различными способами.

Предпочтительный вариант исполнения удаления галогенид-ионов состоит в том, что ионообменник укладывается слоями, а жидкий аммиак пропускается через этот ионообменник, уложенный в виде неподвижного, подвижного, псевдоожиженного или взвешенного слоя. Предпочтительно ионообменники уложены в виде неподвижного слоя.

Различные возможности оформления этого способа, среди прочего, могут быть найдены в публикации Konrad Dorfner, «Ion Exchangers», Walter de Guyter-Verlag, Berlin, 1991, или Ullmann's Encyclopedia of Industrial Chemistry, Electronics Edition, last update 23rd January, 2008, John Wiley & Sons, Inc., глава «Ion Exchangers», страницы с 41 по 52.

Скорость потока жидкого аммиака через уложенный в виде слоя ионообменник, как правило, лежит в области от 5 до 200 (м3 аммиака)/(м3 ионообменника)/в час, предпочтительно от 10 до 120 (м3 аммиака)/(м3 ионообменника)/в час и особенно предпочтительно от 30 до 100 (м3 аммиака)/(м3 ионообменника)/в час.

Другой вариант исполнения способа согласно изобретению состоит в том, чтобы ионообменник приводить в контакт с жидким аммиаком при перемешивании и по истечении времени перемешивания, составляющего от нескольких минут до нескольких часов, отделять от жидкого аммиака. Как правило, время перемешивания находится в интервале от 1 минуты до 48 часов, предпочтительно от 5 минут до 24 часов и особенно предпочтительно от 1 часа до 36 часов.

Концентрация ионообменного материала в жидком аммиаке, как правило, находится в интервале от 10 до 60% масс., предпочтительно в интервале от 20 до 40% масс. и особенно предпочтительно в интервале от 25 до 30% масс.

Отделение ионообменника от жидкого аммиака осуществляется, как правило, путем фильтрации или центрифугирования.

В случае ионообменных материалов, как правило, при увеличивающемся времени использования можно обнаружить потерю активности (деактивирование), которая обычно делается заметной по тому, что концентрация галогенид-ионов в жидком аммиаке после контактирования с деактивированным или частично деактивированным ионообменным материалом уже не является такой низкой, как в случае жидкого аммиака, который был приведен в контакт со свежим или соответственно не активированным (не потерявшим активности) ионообменником.

Обычно активность ионообменника может быть восстановлена при помощи регенерации.

Сильно основные ионообменники обычно регенерируются путем обработки водными щелочными растворами, предпочтительно водными растворами едких щелочей, в частности, NaOH или КОН.

Аммиак, который получается по способу согласно изобретению, как правило, содержит менее 500 частей на млн. галогенид-ионов, предпочтительно менее 100 частей на млн. галогенид-ионов, особенно предпочтительно менее 10 частей на млн. галогенид-ионов. Аммиак, получаемый согласно изобретению, может использоваться в качестве исходного вещества в органическом синтезе. Предпочтительно аммиак, получаемый согласно изобретению, применяется в промышленном способе получения аминов. Особенно предпочтительно аммиак, получаемый согласно изобретению, используется для получения этиленамина.

Благодаря удалению галогенид-ионов обычно сокращается количество нежелательных побочных продуктов, как результата побочных реакций и последующих реакций при дальнейших взаимодействиях жидкого аммиака. Таким же образом, при помощи удаления галогенид-ионов может снижаться коррозия частей оборудования.

Данное изобретение должно поясняться более подробно на приведенных ниже Примерах.

Эксперименты

Пример 1:

В первый автоклав помещали 15 мг хлорида аммония (в виде порошка). Затем автоклав закрывали и нагнетали туда 100 г аммиака при давлении приблизительно 10 бар. После этого перемешивали в течение часа при комнатной температуре и отбирали пробу (примерно 10 г). Концентрация хлорид-ионов в аммиаке была определена при помощи ионной хроматографии (IC).

Концентрация хлорид-ионов в жидком аммиаке составила 100 частей на млн.

Затем оставшийся жидкий аммиак (примерно 90 г) переводили из первого автоклава во второй автоклав, в котором в корзину для катализатора было уложено приблизительно 3 г ионообменника марки Ambersep® 900 Cl (в ОН-форме). После 24 часов перемешивания при комнатной температуре и давлении 10 бар отобрали следующую пробу (приблизительно 10 г). Содержание хлорид-ионов было определено при помощи ионной хроматографии. Определенное таким способом содержание хлорид-ионов составило 5 частей на млн. Содержание хлорид-ионов при помощи приведения в контакт с сильно основным ионообменником согласно изобретению смогли понизить на 95%.

Пример 2:

В первый автоклав помещали 15 мг хлорида аммония (в виде порошка).

Затем автоклав закрывали и нагнетали туда 100 г аммиака при давлении приблизительно 10 бар. После этого перемешивали в течение часа при комнатной температуре и отбирали пробу (примерно 10 г). Концентрация хлорид-ионов в аммиаке была определена при помощи ионной хроматографии.

Концентрация хлорид-ионов составила 93 частей на млн.

Затем оставшийся жидкий аммиак (примерно 90 г) переводили из первого автоклава во второй автоклав, в котором в корзину для катализатора было уложено приблизительно 5 г ионообменника марки Ambersep® 4400 CI (в ОН-форме). После соответственно 3 часов и 24 часов перемешивания при комнатной температуре и давлении 10 бар отобрали соответственно следующую пробу (приблизительно 10 г). Содержание хлорид-ионов было определено при помощи ионной хроматографии. Определенное таким способом содержание хлорид-ионов составило 18 частей на млн. спустя 3 часа и 2 частей на млн. спустя 24 часа. Содержание хлорид-ионов при помощи приведения в контакт с сильно основным ионообменником согласно изобретению смогли понизить на 82% за 3 часа и на 98% за 24 часа.

Источник поступления информации: Роспатент

Показаны записи 351-360 из 658.
20.01.2018
№218.016.102e

Растворимые жидкие составы аммониевых солей хинклорака

Изобретение относится к сельскому хозяйству. Гербицидно активный растворимый жидкий (РЖ) состав содержит: A) аммониевую соль хинклорака формулы I где R, R, R и R независимо означают водород, C-С-алкил, -(CHR-CHR-Z)-H или -(CHR-CHR-CHR-CHR-Z)-H (где R, R, R и R независимо означают водород или...
Тип: Изобретение
Номер охранного документа: 0002633618
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.13c8

Способ получения амидов

Изобретение относится к способу получения амида карбоновой кислоты посредством взаимодействия амина формулы (I), который выбирают из метиламина, диметиламина, этиламина, диэтиламина, н-пропиламина, изопропиламина, диизопропиламина, н-бутиламина, изобутиламина, трет-бутиламина,...
Тип: Изобретение
Номер охранного документа: 0002634619
Дата охранного документа: 02.11.2017
20.01.2018
№218.016.160a

Инкапсулированная частица

Изобретение относится к инкапсулированной частице, включающей в себя ядро, содержащее удобрение, полиуретановый слой и воск. Полиуретановый слой расположен вокруг ядра и воск расположен вокруг полиуретанового слоя. Полиуретановый слой включает в себя продукт реакции изоцианата и полиольного...
Тип: Изобретение
Номер охранного документа: 0002635116
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1952

Способ производства цеолитного материала с использованием элементарных прекурсоров

Изобретение относится к производству цеолитов. Способ получения цеолитного материала, имеющего каркасную структуру, содержащую YO, включает следующие стадии. 1 - приготовление смеси, содержащей четырехвалентные элементы Y в элементарной форме, гидроксосоль четвертичного аммония, и воду....
Тип: Изобретение
Номер охранного документа: 0002636085
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1a1e

Композиция для химико-механической полировки (смр), содержащая неионное поверхностно-активное вещество и ароматическое соединение, содержащее по меньшей мере одну кислотную группу

Изобретение по существу относится к композиции для химико-механической полировки (СМР). Композиция содержит: (А) неорганические частицы, органические частицы, или их смесь, или их композит, где частицы находятся в форме кокона, (В) амфифильное неионное поверхностно-активное вещество...
Тип: Изобретение
Номер охранного документа: 0002636511
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1b04

Способ и установка для разогрева природного газа

Изобретение относится к газовой промышленности. Настоящее изобретение представляет способ и установку для нагрева природного газа, причем способ включает в себя следующие стадии: a) подачу природного газа, который имеет температуру от -10°C до 50°C и находится под давлением по меньшей мере в 30...
Тип: Изобретение
Номер охранного документа: 0002635960
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1b71

Последующая обработка деборированного цеолита бета

Изобретение относится к цеолитным материалам. Предложен способ последующей обработки цеолитного материала, обладающего каркасной структурой ВЕА. Способ включает: (i) предоставление цеолитного материала, обладающего каркасной структурой ВЕА, в котором каркасная структура включает ХО и YO, где Y...
Тип: Изобретение
Номер охранного документа: 0002636724
Дата охранного документа: 27.11.2017
20.01.2018
№218.016.1bac

Использование алкоксилированных неионогенных поверхностно-активных веществ в качестве добавки в водных составах для чистки мембран

Целью настоящего изобретения является использование разветвленного алкоксилированного неионогенного поверхностно-активного вещества в качестве добавки к водному составу для чистки мембран. Описан водный состав для чистки мембран, содержащий алкоксилированное неионогенное поверхностно-активное...
Тип: Изобретение
Номер охранного документа: 0002636661
Дата охранного документа: 27.11.2017
20.01.2018
№218.016.1bba

Способ получения сложных эфиров карбоновых кислот и их применение в качестве пластификаторов

Настоящее изобретение касается способа получения сложных эфиров карбоновых кислот, при котором в реакционной системе, состоящей из одного или нескольких реакторов, подвергают взаимодействию реакционную смесь, которая содержит по меньшей мере одну карбоновую кислоту и/или по меньшей мере один...
Тип: Изобретение
Номер охранного документа: 0002636586
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1bfe

Способ непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого углеводорода

Изобретение относится к способу непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого C-C-углеводорода в газовой фазе, включающему порядок работы, при котором к реакционному пространству, окруженному оболочкой, соприкасающейся с реакционным...
Тип: Изобретение
Номер охранного документа: 0002436757
Дата охранного документа: 20.12.2011
Показаны записи 351-360 из 384.
19.01.2018
№218.016.0974

Композиция для очистки после химико-механического полирования (после - смр), содержащая конкретное содержащее серу соединение и сахарный спирт или поликарбоновую кислоту

Очищающая композиция после химико-механического полирования (после-СМР), содержащая: (А) соединение, представляющее собой цистеин, N-ацетилцистеин, тиомочевину или их производное, (В) эритрит, (С) водную среду и (Е) по меньшей мере одно поверхностно-активное вещество, и ее применение для...
Тип: Изобретение
Номер охранного документа: 0002631870
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.09c7

Огнестойкие полиамиды со светлой окраской

Изобретение относится к термопластичным формовочным массам, к применению их для изготовления волокон, пленок, формованных изделий, таких как волокна, пленки, формованные изделия, а также к применениям соли или оксида меди (I) или серебра (I) или их смесей для изготовления формовочных масс или...
Тип: Изобретение
Номер охранного документа: 0002632010
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0a9c

Жесткие пенополиуретаны

Настоящее изобретение относится к жестким пенополиуретанам, способу их получения, а также к полиольной смеси для их получения. Жесткий пенополиуретан получают путем превращения А) органических или модифицированных органических полиизоцианатов или их смесей, В) одного или нескольких простых...
Тип: Изобретение
Номер охранного документа: 0002632198
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0aae

Способ получения катализатора для риформинга и риформинг метана

Изобретение относится к катализатору для гетерогенного катализа, который содержит по меньшей мере смешанный оксид никеля и магния и магниевую шпинель, где смешанный оксид никеля и магния обладает средним размером кристаллитов ≤100 нм, фаза магниевой шпинели обладает средним размером...
Тип: Изобретение
Номер охранного документа: 0002632197
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0bfc

Каучуковый материал с барьерным материалом из сополимеров циклоолефинов

Изобретение относится к применению сополимера для снижения газопроницаемости каучукового материала. Также описан каучуковый материал, снабженный барьерным материалом в виде сополимера, и шина, включающая каучуковый материал. Сополимер получен путем метатезисной полимеризации с раскрытием цикла...
Тип: Изобретение
Номер охранного документа: 0002632584
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0c9d

Загуститель, содержащий по меньшей мере один катионный полимер

Изобретение относится к сгущающему средству, способу его получения, к содержащей поверхностно-активные вещества кислотной композиции, включающей по меньшей мере одно сгущающее средство, применяемой в качестве кондиционера для стирки белья или жидких моющих средств, а также применение сгущающего...
Тип: Изобретение
Номер охранного документа: 0002632660
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0ca9

Реактор для окисления аммиака с внутренним фильтровальным элементом

Изобретение относится к окислению аммиака до монооксида азота и может быть использовано в химической промышленности. Реактор 10 для окисления аммиака до монооксида азота в присутствии катализатора включает корпус 11, имеющий верхнюю 12, среднюю 16 и нижнюю 14 части, фильтровальную пластину 24,...
Тип: Изобретение
Номер охранного документа: 0002632685
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cce

Способ непрерывного получения пеноматериалов в трубах

Изобретение относится к технологии полимерных материалов и касается непрерывного изготовления изолированной трубы. Способ включает внутреннюю трубу, трубу-оболочку, слой по меньшей мере из одного полиуретана между по меньшей мере одной внутренней трубой и трубой-оболочкой и пленочный рукав...
Тип: Изобретение
Номер охранного документа: 0002632689
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0e21

Сополимеры на основе изопренола, моноэтиленненасыщенных монокарбоновых кислот и сульфокислот, способ их получения и их применение в качестве ингибиторов образования отложений в водопроводящих системах

Изобретение относится к сополимерам на основе изопренола. Сополимеры на основе изопренола включают: (a) от 5 до 40 мас.% изопренола, (b) от 5 до 93 мас.% по меньшей мере одной моноэтиленненасыщенной монокарбоновой кислоты с 3-8 атомами углерода, выбранной из акриловой кислоты и метакриловой...
Тип: Изобретение
Номер охранного документа: 0002632991
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.102e

Растворимые жидкие составы аммониевых солей хинклорака

Изобретение относится к сельскому хозяйству. Гербицидно активный растворимый жидкий (РЖ) состав содержит: A) аммониевую соль хинклорака формулы I где R, R, R и R независимо означают водород, C-С-алкил, -(CHR-CHR-Z)-H или -(CHR-CHR-CHR-CHR-Z)-H (где R, R, R и R независимо означают водород или...
Тип: Изобретение
Номер охранного документа: 0002633618
Дата охранного документа: 16.10.2017
+ добавить свой РИД