×
10.03.2014
216.012.aa16

Результат интеллектуальной деятельности: ТЕРМОКОМПРЕССИОННОЕ УСТРОЙСТВО

Вид РИД

Изобретение

№ охранного документа
0002509257
Дата охранного документа
10.03.2014
Аннотация: Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя. Баллон-компрессор снабжен внешней теплозащитой и теплообменником, выполненным в виде трубчатого змеевика, размещенного во внутренней полости баллона-компрессора и прикрепленного к его стенке с обеспечением теплового контакта. На входе в трубчатый змеевик установлены параллельно включенные пускоотсечные устройства и посредством хладопровода через первое пускоотсечное устройство трубчатый змеевик подключен к источнику холода, а через второе пускоотсечное устройство - к магистрали прокачки теплоносителя. Трубчатый змеевик подключен на выходе к тепловому экрану, установленному в слоях теплоизоляции. Магистраль прокачки теплоносителя снабжена подогревателем, установленным на входе в трубчатый змеевик перед вторым пускоотсечным устройством. Технический результат изобретения заключается в том, что предлагаемая позволяет исключить использование жидкого теплоносителя, повысить эффективность теплообмена и упростить конструкцию и эксплуатацию устройства, при этом обеспечивается заправка баллонов потребителя газом, исключающая его загрязнение. 1 ил.
Основные результаты: Термокомпрессионное устройство, содержащее источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя, отличающееся тем, что баллон-компрессор снабжен внешней теплозащитой и теплообменником, выполненным в виде трубчатого змеевика, размещенного во внутренней полости баллона-компрессора и прикрепленного к его стенке с обеспечением теплового контакта, при этом на входе в трубчатый змеевик установлены параллельно включенные пускоотсечные устройства и посредством хладопровода через первое пускоотсечное устройство трубчатый змеевик подключен к источнику холода, а через второе пускоотсечное устройство к магистрали прокачки теплоносителя, кроме того, трубчатый змеевик подключен на выходе к тепловому экрану, установленному в слоях теплоизоляции, причем магистраль прокачки теплоносителя снабжена подогревателем, установленным на входе в трубчатый змеевик перед вторым пускоотсечным устройством.

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров), используемых, например, при заполнении газом баллонов высокого давления с соблюдением высоких требований по чистоте, как закачиваемого газа, так и внутренних объемов и поверхностей заправляемой системы.

Принцип работы термокомпрессионного устройства широко известен. Основу его составляет емкость (баллон-компрессор), которую вначале охлаждают, желательно до температуры конденсации газа, и заполняют ее газом из стендовых баллонов. Затем стендовые баллоны отсекают, емкость нагревают, давление газа в ней растет, и он перекачивается в заправляемую емкость. Таких циклов всасывания - нагнетания совершается столько, сколько необходимо для достижения заданного давления в заправляемой емкости.

Известны компрессионные устройства для регенерации хладагентов (см., например, патент США №5379607, МПК: F25B 49/00, от 12.10.1993), содержащие компрессор, ресивер, емкости высокого давления, теплообменники, магистрали заправки и подачи газа потребителю.

Наличие в них механического компрессора, для которого используется смазка вращающихся и перемещающихся узлов и деталей, не исключает загрязнения газа парами масла (смазки), что не допускается при перекачке (заправке) газа в баллоны потребителя. Кроме того, усложнена конструкция и эксплуатация устройства.

Недостатками аналога являются загрязнение газа при заправке баллонов потребителя и сложность обслуживания при эксплуатации оборудования.

Известно также термокомпрессионное устройство для регенерации хладагентов (см., например, патент России №2351840, МПК: F17C 5/06, приоритет от 07.08.20043), выбранное в качестве прототипа и содержащее источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя, а также модули для термоциклирования баллонов-компрессоров, в состав которых входят теплоизолированные емкости, заполненные жидким теплоносителем, в который погружены баллоны-компрессоры. Теплоизолированные емкости также снабжены нагревателем, мешалкой с электроприводом и теплообменником, погруженным в теплоноситель и подключенным к источнику холода. Данное устройство позволяет обеспечить заправку баллонов потребителя газом, исключающую его загрязнение, но использование жидкого теплоносителя для проведения термоциклирования баллонов-компрессоров значительно усложняет конструкцию и эксплуатацию устройства, что также приводит к увеличению материальных затрат при изготовлении и эксплуатации его.

Недостатками прототипа являются конструкции и эксплуатации устройства, а также наличие громоздкого оборудования, необходимого для проведения термоциклирования баллонов-компрессоров при использовании жидкого теплоносителя.

Задачей настоящего изобретения является создание такого термокомпрессионного устройства, которое исключало бы использование жидкого теплоносителя, повышало эффективность теплообмена, а также упрощало конструкцию и эксплуатацию устройства, при обеспечении заправки баллонов потребителя газом, исключающей его загрязнение.

Технический результат достигается тем, что в термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя в отличие от прототипа, баллон-компрессор снабжен внешней теплозащитой и теплообменником, выполненным в виде трубчатого змеевика, размещенного во внутренней полости баллона-компрессора и прикрепленного к его стенке с обеспечением теплового контакта, при этом на входе в трубчатый змеевик установлены параллельно включенные пускоотсечные устройства и посредством хладопровода через первое пускоотсечное устройство трубчатый змеевик подключен к источнику холода, а через второе пускоотсечное устройство к магистрали прокачки теплоносителя, кроме того, трубчатый змеевик подключен на выходе к тепловому экрану, установленному в слоях теплоизоляции, причем магистраль прокачки теплоносителя снабжена подогревателем, установленным на входе в трубчатый змеевик перед вторым пускоотсечным устройством.

Технический результат данного изобретения заключается в том, что предлагаемая позволяет исключить использование жидкого теплоносителя, повысить эффективность теплообмена и упростить конструкцию и эксплуатацию устройства, при этом обеспечивается заправка баллонов потребителя газом, исключающая его загрязнение.

Использование предлагаемого термокомпрессионного устройства, например, при заправке баллонов потребителя, устанавливаемых на космических летательных аппаратах (спутников связи), позволит дать значительный экономический эффект за счет исключения использования жидкого теплоносителя, повышения эффективности теплообмена, улучшения и упрощения конструкции и эксплуатации устройства, а также за счет обеспечения заправки баллонов потребителя газом, исключающей его загрязнение.

Сущность изобретения поясняется чертежом, на котором изображено термокомпрессионное устройство.

Термокомпрессионное устройство состоит из следующих основных узлов и деталей: источника газа высокого давления 1, например, стендовых баллонов высокого давления, заправленных чистым газом, например ксеноном, и подключенных к нему баллоном-компрессором 2, источника холода 3, например сосуда Дьюара с жидким азотом, и магистрали прокачки теплоносителя 4. Баллон-компрессор 2 снабжен внешней теплозащитой 5 и теплообменником 6, выполненным в виде трубчатого змеевика 7, размещенного во внутренней полости 8 баллона-компрессора и прикрепленного к его стенке 9 с обеспечением теплового контакта, например, посредством пайки. На входе 10 в трубчатый змеевик 7 установлены параллельно включенные пускоотсечные устройства 11 и 12, например вентили, и посредством хладопровода 13 (теплоизолированного трубопровода) через первое пускоотсечное устройство (вентиль) 11 трубчатый змеевик 7 подключен к источнику холода (сосуду Дьюара с жидким азотом) 3. Через второе пускоотсечное устройство (вентиль) 12 трубчатый змеевик 7 подключен к магистрали прокачки теплоносителя 4. На выходе 14 трубчатый змеевик 7 подключен к тепловому экрану 15, установленному в слоях теплоизоляции 16. Магистраль прокачки теплоносителя 4 снабжена подогревателем 17, установленным на входе 10 в трубчатый змеевик 7 перед вторым пускоотсечным устройством 12. В качестве подогревателя 17 может быть использован, например, врезной электронагреватель марки «CetaL».

Магистраль прокачки теплоносителя 4 дополнительно снабжена вентилем 18 и газовым редуктором 19, который предназначен для настройки и регулировки расхода и давления теплоносителя в магистрали прокачки теплоносителя 4. В качестве теплоносителя используют газ, например воздух, азот.

Теплозащита 5 баллона-компрессора 2 состоит из теплового экрана 15 и теплоизоляции 16, выполненной, например, из пенополиуретана или многослойной экранно-вакуумной изоляции.

Заправку, например, ксеноном баллона-компрессора 2 от стендовых баллонов 1 производят по трубопроводу заправки газа 20 с вентилем 21. Баллон-компрессор 2 подключен к баллонам потребителя 22 посредством магистрали подачи газа 23, снабженной вентилями 24 и 25 и теплообменником-охладителем 26. Трубопровод заправки газа 20 включен в магистраль подачи газа 23 между вентилями 24 и 25, что обеспечивает подачу газа из стендовых баллонов 1 отдельно, как в баллон-компрессор 2, так и в баллоны потребителя 22. Тепловой экран 15 (прокачного типа) содержит прокачной канал 27 для прокачки отходящих паров теплоносителя (азота), выполненный, например, в виде змеевика из трубки, скрепленной с обечайкой, и подключенного к змеевику 7 теплообменника 6, при этом в совокупности с теплоизоляцией 16 обеспечивает защиту баллона-компрессора 2 от теплопритоков извне при захолаживании баллона-компрессора 2, а при нагревании - защищает его от охлаждения (обратный эффект).

Работает термокомпрессионное устройство следующим образом. Перед началом работы устройства производят очистку внутренних полостей магистрали подачи газа и трубопровода заправки газа, включая баллон-компрессор и баллоны потребителей, от влаги и воздуха. Очистка производится способом вакуумирования с последующей продувкой чистым азотом и ксеноном. Источником закачиваемого газа, например ксенона, в баллоны потребителя являются стендовые баллоны 1, заполненные чистым ксеноном высокого давления порядка 40 кг/см2. В закачиваемом ксеноне должно быть кислорода не более 3·10-5 объемных долей, а водяных паров не более 4·10-5 объемных долей. Работа устройства основана на использовании принципа термокомпрессора, в котором необходимое для заправки (закачки) давление ксенона достигается в баллоне-компрессоре 2 по изохорическому процессу. После проведения очистки внутренних полостей магистрали, трубопровода и баллонов осуществляют процесс термокомпрессии и подачу (закачку) ксенона в баллоны потребителя 22, который производится следующим образом.

В исходном положении все вентили закрыты.

Первоначально производят захолаживание баллона-компрессора 2, для этого открывают вентиля 11 и от источника холода 3, например, из сосуда Дьюара подают, например, жидкий или парообразный азот (хладагент) прокачивают его через трубчатый змеевик 7, размещенный во внутренней полости 8 баллона-компрессора 2, захолаживают баллон-компрессор 2 внутренний сосуд 5 до температуры порядка минус 80°C, при этом пары азота, образующиеся в трубчатом змеевике 7, через выход 14 поступают в прокачной канал 27 теплового экрана 15, охлаждают экран 15, снимают теплопритоки, поступающие из окружающей среды к баллону-компрессору 2, и сбрасываются в атмосферу.

В захоложенный баллон-компрессор 2 из стендовых баллонов 1 подают ксенон, для чего открывают вентили 21, 24 и заполняют баллон-компрессор 2, доводя до заданного давления, при этом происходит конденсация ксенона в баллоне-компрессоре 2 (цикл всасывания). После заполнения баллона-компрессора 2 ксеноном и охлаждения его до температуры порядка минус 80°C стендовый баллон 1 отсекают (закрывают вентили 21 и 24) и закрытием вентиля 11 отсекают подачу хладагента в трубчатый змеевик 7. Одновременно открывают вентили 18, 12 на магистрали прокачки теплоносителя 4, после чего включают подогреватель 17. При этом теплоноситель (воздух), при прохождении через подогреватель 17 нагревается до температуры порядка плюс 95°C и поступает в трубчатый змеевик 7, имеющий тепловой контакт со стенкой 9 баллона-компрессора 2, нагревает баллон-компрессор 2 до температуры порядка плюс 90°C и через выход 14 поступает в прокачной канал 27 теплового экрана 15, нагревает его, создавая в совокупности с теплоизоляцией 16 защитный тепловой барьер от окружающей среды, и сбрасывается в атмосферу, при этом давление ксенона в баллоне-компрессоре 2 растет, а при сообщении его с баллонами потребителя 22 посредством открытия вентилей 24, 25 на магистрали подачи газа 23, ксенон, проходя через теплообменник-охладитель 26, охлаждается до заданной температуры (температуры охлаждающей среды) и поступает в баллоны потребителя 22 (цикл нагнетания). После выравнивания давления между баллоном-компрессором 2 и баллонами потребителя 22 вентили 24, 25 закрывают, а также выключают подогреватель 17 и закрывают вентили 12, 18 на магистрали прокачки теплоносителя 4. Таких последовательных процессов (температурных циклов) охлаждения-нагрева вновь пополняемых порций ксенона из стендового баллона 1 в баллон-компрессор 2 совершают столько, сколько необходимо для достижения заданною давления ксенона в баллонах потребителя 22, например, до 100 кг/см2.

Размещение во внутренней полости 8 баллона-компрессора 2 теплообменника 6, выполненного в виде трубчатого змеевика 7, прикрепленного с тепловым контактом к стенке 9 и обеспечивающего захолаживание баллона-компрессора 2, значительно повышает эффективность теплообмена за счет теплового контакта ксенона с поверхностью охлаждаемого хладагентом змеевика 7 непосредственно от источника холода 3, что также сокращает время захолаживания как самого баллона-компрессора 2, так и ксенона. Кроме того, подключение трубчатого змеевика через параллельно установленные перед входом 10 в трубчатый змеевик пускоотсечные устройства 11 и 12 соответственно к источнику холода 3 и к магистрали прокачки теплоносителя 4 позволяют использовать трубчатый змеевик 7 поочередно для охлаждения и нагрева баллона-компрессора 2, что упрощает и улучшает конструкцию, а подключение теплообменника 6 к тепловому экрану 15 прокачного типа обеспечивает в процессе термоциклирования баллона-компрессора 2 поочередную (соответственно при захолаживании и нагреве) его теплозащиту за счет съема теплопритоков при прокачке паров азота и создании теплового барьера при прокачке нагретого теплоносителя. Таким образом, предлагаемое техническое исполнение термокомпрессионного устройства позволяет исключить жидкий теплоноситель и использовать только газообразный теплоноситель, а также обеспечивает заправку баллонов потребителя газом, исключающей загрязнение газа, при этом повышается эффективность теплообмена, упрощены эксплуатация и улучшена конструкция устройства, что выполняет поставленную задачу.

Термокомпрессионное устройство, содержащее источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки теплоносителя, отличающееся тем, что баллон-компрессор снабжен внешней теплозащитой и теплообменником, выполненным в виде трубчатого змеевика, размещенного во внутренней полости баллона-компрессора и прикрепленного к его стенке с обеспечением теплового контакта, при этом на входе в трубчатый змеевик установлены параллельно включенные пускоотсечные устройства и посредством хладопровода через первое пускоотсечное устройство трубчатый змеевик подключен к источнику холода, а через второе пускоотсечное устройство к магистрали прокачки теплоносителя, кроме того, трубчатый змеевик подключен на выходе к тепловому экрану, установленному в слоях теплоизоляции, причем магистраль прокачки теплоносителя снабжена подогревателем, установленным на входе в трубчатый змеевик перед вторым пускоотсечным устройством.
ТЕРМОКОМПРЕССИОННОЕ УСТРОЙСТВО
Источник поступления информации: Роспатент

Показаны записи 291-300 из 373.
20.02.2019
№219.016.bf99

Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления

Изобретение относится к области космической техники, к системам электроснабжения космических аппаратов, и может быть использовано при эксплуатации солнечных батарей. Способ определения максимальной выходной мощности солнечных батарей космического аппарата включает измерение угла между...
Тип: Изобретение
Номер охранного документа: 0002353555
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.bf9d

Аварийно-спасательный скафандр космонавта для транспортного средства

Изобретение относится к аварийно-спасательному космическому скафандру мягкого типа. Согласно изобретению скафандр содержит внешнюю силовую и внутреннюю герметичную оболочки, герметизируемый вход в эти оболочки, шлем с остеклением, регулятор давления, объединенный разъем коммуникаций...
Тип: Изобретение
Номер охранного документа: 0002353561
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.c038

Система наддува топливных баков

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации реактивных двигательных установок (РДУ) космических летательных аппаратов (КЛА). В системе наддува топливных баков в каждую пневмомагистраль после газовых редукторов введены два параллельно включенных...
Тип: Изобретение
Номер охранного документа: 0002339835
Дата охранного документа: 27.11.2008
20.02.2019
№219.016.c05f

Способ диагностики нерастворенных газовых включений в заправленных рабочими телами гидравлических системах космических аппаратов

Изобретение относится к космической технике и предназначено для использования, преимущественно, в гидравлических системах терморегулирования пилотируемых космических аппаратов в ходе орбитального полета. Предлагаемый способ включает предварительную разгрузку рабочего тела (РТ) системы от...
Тип: Изобретение
Номер охранного документа: 0002304072
Дата охранного документа: 10.08.2007
20.02.2019
№219.016.c0c1

Устройство подачи термостатирующей среды в отсек ракеты-носителя

Изобретение относится к устройствам воздушного термостатирования объектов, например приборов системы управления полезного груза и других объектов, размещаемых в отсеках ракетных блоков и блоках космической головной части ракеты-носителя, в период их предстартовой подготовки. Устройство согласно...
Тип: Изобретение
Номер охранного документа: 0002368548
Дата охранного документа: 27.09.2009
01.03.2019
№219.016.cf47

Релейный регулятор

Изобретение относится к автоматике и может быть использовано в системах управления различными инерционными объектами, например поворотными платформами, промышленными роботами, летательными аппаратами. Релейный регулятор содержит первое и второе сравнивающие устройства, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002403607
Дата охранного документа: 10.11.2010
11.03.2019
№219.016.d840

Способ формирования меток времени и устройство для его реализации

Изобретение относится к вычислительной и импульсной технике и может быть использовано в системах, использующих программно-временные устройства. Техническим результатом изобретения является упрощение способа и устройства реализации за счет снижения объема преобразуемой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002391773
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d842

Привод

Изобретение может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Привод содержит корпус (1), размещенный в нем двигатель (2), связанный с выступающим из корпуса со стороны его первого торца (3) выходным валом (4), а также датчик (16) угла поворота. Вал...
Тип: Изобретение
Номер охранного документа: 0002391583
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d941

Радиальный вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники, а также в других областях техники. Технический результат заключается в повышении надежности радиального вентилятора за счет устранения возможности...
Тип: Изобретение
Номер охранного документа: 0002354850
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.d96f

Космическая головная часть ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании и создании космической головной части. Космическая головная часть ракеты-носителя содержит обтекатель, космический аппарат, состоящий из, по крайней мере одного отсека, на поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002355607
Дата охранного документа: 20.05.2009
Показаны записи 291-292 из 292.
19.04.2019
№219.017.3024

Устройство для хранения и подачи жидких компонентов (варианты)

Изобретение относится к устройствам для хранения и подачи жидкостей и может быть использовано для хранения и подачи компонентов топлива к потребителям на космических кораблях и летательных аппаратах. Предлагаемое устройство содержит раму с установленными на ней системой наддува и топливными...
Тип: Изобретение
Номер охранного документа: 0002301180
Дата охранного документа: 20.06.2007
09.05.2019
№219.017.4a84

Отсек компонентов дозаправки

Изобретение относится к топливным системам преимущественно транспортных космических кораблей, обеспечивающих дозаправку орбитальных станций типа «Мир». Предлагаемый отсек содержит кольцевую раму, баки окислителя и горючего с соответствующей этим компонентам арматурой и системами наддува. При...
Тип: Изобретение
Номер охранного документа: 0002276044
Дата охранного документа: 10.05.2006
+ добавить свой РИД