×
10.03.2014
216.012.a94a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано как добавка к бетонам, полимерам, существенно улучшающая их эксплуатационные свойства. Способ получения углеродного наноматериала включает предварительную подготовку сфагнового мха, в ходе которой его освобождают от инородных примесей, просушивают до влажности не более 10% и подвергают измельчению, затем измельченный материал подвергают пиролизу при температуре 850-950°C в течение 1-2 ч, охлаждают до комнатной температуры, после чего аморфный углерод, полученный в процессе пиролиза, подвергают механоактивации в варио-планетарной мельнице в течение 7-10 часов. Изобретение позволяет обеспечить высокий выход нанотрубок с высокой чистотой. 4 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к области химии углеродных материалов, в частности к получению углеродных наноматериалов, содержащих многостенные углеродные нанотрубки и углеродные нановолокна, которые могут быть использованы как добавки к бетонам, полимерам и существенно улучшающие их эксплуатационные свойства.

Известен способ получения углеродного наноматериала из дешевого возобновляемого органического сырья (полевой травы) методом термической обработки (см. Kang Z., Wang Е., Мао В., Su Z. Nanotechnology, 16, 2005. - Р.1192-1195).При этом, вначале осуществляют предварительную подготовку сырья. Свежескошенную полевую траву (3-5 г) сушат, измельчают и нагревают на воздухе при 250°С в течение 1 часа. Полученный продукт моют спиртом и водой. Синтез углеродного наноматериала осуществляют в атмосфере кислорода в герметичной емкости при температуре 600°С в течение 20 мин, а затем охлаждают до комнатной температуры. Этот процесс синтеза, включающий герметизацию предварительно подготовленного сырья в атмосфере кислорода с последующим нагревом и выдержкой при температуре 600°С в течение 20 мин повторяют 50 раз. В полученном продукте после трехкратной очистки содержание наноматериала по данным электронной просвечивающей микроскопии составляет до 15%.

Однако, несмотря на простоту оборудования и низкую стоимость используемого сырья из-за многократного повторения процесса синтеза, включающего герметизацию, нагрев до температуры 600°С, выдержку в течение 20 мин, и последующего охлаждения до комнатной температуры предварительно подготовленного сырья эффективность его недостаточно высока из-за низкой производительности.

Известен также способ получения углеродного наноматериала, включающий предварительную подготовку органического сырья, его термическую обработку и охлаждение до комнатной температуры (см. RU 2437829, В82В 3/00, B82Y 40/00, 2010). Способ включает использование в качестве органического сырья торфа, при этом, в ходе предварительной обработки доводят влажность торфа до значения 50-60%, термическую обработку осуществляют в герметичной емкости в атмосфере воздуха при температуре 620-650°С в течение 1-2 ч.

Недостаток этого решения низкий выход наноматериала (содержание углеродного наноматериала максимально составляет 13-15%, кроме того, наноматериал включает нанотрубки, нановолоки и аморфный углерод, т.е. является смесью нескольких целевых материалов и не может быть достаточно чистым.

Задачей предлагаемого изобретения является повышение эффективности процесса получения углеродного наноматериала за счет обеспечения выхода материала в виде нанотрубок высокой чистоты.

Технический результат, получаемый при решении технической задачи, выражается в обеспечении высокого выхода нанотрубок, при этом чистота получаемых трубок очень высока.

Для решения поставленной технической задачи способ получения углеродного наноматериала, включающий предварительную подготовку органического сырья, его термическую обработку и охлаждение до комнатной температуры, отличается тем, что в качестве органического сырья используют сфагновый мох, при этом в ходе предварительной обработки сфагновый мох, предпочтительно просушивают до влажности не более 10%, освобождают от инородных примесей, после чего подвергают измельчению, причем после завершения предварительной обработки, измельченный материал подвергают пиролизу при температуре 850-950°С в течение 1-2 ч, после чего аморфный углерод, полученный в процессе пиролиза подвергают механоактивации в течение 7-10 часов, для чего используют варио-планетарную мельницу. Кроме того, в процессе механоактивации задают истирающий режим работы варио-планетарной мельницы, при этом, число оборотов главного диска мельницы составляет от 200 до 400 об/мин, а число оборотов сателлитов составляет от 400 до 800 об/мин. Кроме того, дезинтеграторную обработку осуществляют до достижения дисперсности менее 500 мкм. Кроме того, механоактивацию осуществляют в защитной атмосфере, например, аргона. Кроме того, в процессе механоактивации используют размольные шары из твердого сплава ВК-6 диаметром 15 мм, при отношении массы загрузки к массе размольных тел от 1:50 до 1:250.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию "новизна".

Признаки отличительной части формулы изобретения обеспечивают решение комплекса функциональных задач.

Признак «…в качестве органического сырья используют сфагновый мох…» обеспечивает высокий выход наноматериала в виде нанотрубок, чему способствует исходная фрактальная структура этого материала.

Признаки «…в ходе предварительной обработки сфагновый мох, предпочтительно просушивают до влажности не более 10%, освобождают от инородных примесей, после чего подвергают измельчению…» обеспечивают повышение эффективности последующей термической обработки сырья и чистоту получаемого продукта.

Признаки «…после завершения предварительной обработки, измельченный материал подвергают пиролизу при температуре 850-950°С в течение 1-2 ч…» обеспечивают полную трансформацию сырья в аморфный углерод, при этом, температурная обработка при меньшем значении температуры и времени обработки может не обеспечить полную возгонку летучих веществ и отгонку паров воды и потребует увеличения продолжительности процесса термообработки, а температурная обработка при большем значении температуры и времени обработки приведет к трансформации аморфного углерода (по крайней мере, его части) в кристаллический, что сделает невозможным получение наноматериала на последующем этапе или уменьшит выход наноматериала по отношению к расходу сырья.

Признаки «…аморфный углерод, полученный в процессе пиролиза подвергают механоактивации в течение 7-10 часов…» обеспечивают превращение аморфного углерода в наноматериал, содержащий нанотрубки, при этом вариация продолжительности процесса зависит от интенсивности процесса механоактивации (его энергоотдачи), уменьшаясь при повышении его интенсивности и наоборот.

Признаки, указывающие что для механоактивации сырья «используют варио-планетарную мельницу» обеспечивают возможность подбора оптимального режима механоактивации, поскольку такие мельницы,в отличие от обычных шаровых мельниц обеспечивают возможность воздействовать на движение и траектории мелющих шаров таким образом, что они ударяются горизонтально о внутреннюю стенку размольного стакана (высокая энергия удара), приближаются друг к другу тангенциально (высокое трение) или просто перекатываются по внутренней стенке размольного стакана (центробежные мельницы).

Признаки, указывающие что «в процессе механоактивации задают истирающий режим работы варио-планетарной мельницы» исключают ударное разрушение и наклеп углеродного материала в процессе его механоактивации, при которых нельзя получить нанотрубки.

Признаки, указывающие что в процессе механоактивации «число оборотов главного диска мельницы составляет от 200 до 400 об/мин, а число оборотов сателлитов составляет от 400 до 800 об/мин» оговаривают наиболее оптимальную интенсивность процесса механоактивации.

Признаки, указывающие что «дезинтеграторную обработку осуществляют до достижения дисперсности менее 500 мкм» задают предпочтительную крупность частиц сырьевой массы, как с позиций ее компактирования, так и энергоемкости процесса.

Признаки, указывающие что «механоактивацию осуществляют в защитной атмосфере, например, аргона» позволяют повысить чистоту материала получаемых нанотрубок.

Признаки, указывающие что «в процессе механоактивации используют размольные шары из твердого сплава ВК-6 диаметром 15 мм, при отношении массы загрузки к массе размольных тел от 1:50 до 1:250» задают интенсивность процесса механоактивации.

Заявленное изобретение иллюстрируется изображениями, полученными методом сканирующей электронной микроскопии: на фиг.1 показана поверхность сфагнового мха до пиролиза; на фиг.2. показана пиролитическая модификация из сфагнума после 1 часа механоактивации; на фиг.3 показано то же, через 2 часа механоактивации; на фиг.4. показано то же, через 4 часа механоактивации; на фиг.5. показано то же, через 6 часов механоактивации; на фиг.6. показано то же, через 8 часов механоактивации; на фиг.7 и фиг.8. показано то же, через 10 часов механоактивации, при различном увеличении; на фиг.9 показано изображение, полученное методом просвечивающей электронной микроскопии, нановолокнистого углерода (многостенных нанотрубок) из сфагнума бурого после 10 часов механоактивации.

Способ осуществляют следующим образом. Исходным материалом является сфагновый мох, который очищают от инородных примесей, для чего пропускают его через сито (например, сепарационные). Очищенный сфагновый мох сушат, помещая его, например, в специальный сушильный шкаф, оборудованный вентиляционным обдувом потоками теплого воздуха (t=45-50°C), снижая его влажность как минимум до 10% от исходной массы. После сушки сфагновый мох подвергают измельчению, до крупности менее 1 мм, желательно, менее 0,5. В качестве узла измельчения могут быть использованы устройства известной конструкции, обеспечивающие измельчение материала до нужной дисперсности, например миксеры как механические, так и вибромиксеры, желательно регулируемые по скорости и размерам измельчения.

Подготовленную массу подвергают пиролизу при температуре 850-950°С, в вакуумной печи, например печь типа СНВЭ-2.4.2/16 И2, снабженной камерой равномерного нагрева, оборудованной датчиками для создания специальной защитной атмосферы (инертной среды), а также снабженной функцией отвода газов и конденсата. Время нагрева соответствует 1-2 ч. Полученный аморфный углерод охлаждают как минимум до 20°С, после чего, подвергают процессу механоактивации.

Для механоактивации углеродной массы используют варио-планетарную мельницу Pulverisette - 4 фирмы «Fritsch» (Германия). В отличие от обычных шаровых мельниц в варио-планетарной мельнице Pulverisette - 4 скорости вращения размольных стаканов и опорного диска могут устанавливаться независимо друг от друга. Варьируя передаточное отношение, можно воздействовать на движение и траектории мелющих шаров таким образом, что будет реализовываться:

- ударный режим (шары ударяются горизонтально о внутреннюю стенку размольного стакана - высокая энергия удара);

- истирающий режим (шары приближаются друг к другу тангенциально - высокое трение);

- режим центробежной мельницы (шары перекатываются по внутренней стенке размольного стакана).

Кроме того, могут быть свободно установлены все промежуточные стадии и комбинации между давлением, трением и ударом.

Некоторые особенности конструкции мельницы:

- свободно выбираемая, регулируемая скорость вращения±1000 об/мин, как для размольных стаканов, так и для опорного диска;

- варьируемые передаточные отношения регулируются в неограниченном интервале;

- RS 232 интерфейс для программирования и передачи параметров измельчения на персональный компьютер (сертификация рабочих параметров), а также для управления мельницей;

- программируемые с помощью компьютера продолжительности измельчения и перерывов, а также циклов измельчения.

Процесс механоактивации задают как истирающий режим работы варио-планетарной мельницы, при этом число оборотов главного диска мельницы составляет от 200 до 400 об/мин, а число оборотов сателлитов составляет от 400 до 800 об/мин. Кроме того, в процессе механоактивации используют размольные шары из твердого сплава ВК-6 диаметром 15 мм (в количестве 18 штук), при отношении массы загрузки к массе размольных тел от 1:50 до 1:250. Полная загрузка размольного стакана мельницы (объем размольных тел + загрузка аморфного углерода до полного заполнения объема размольного стакана (порядка 10 грамм) соответствуют интенсивности размола 1:50.

При отработке способа, механоактивацию осуществляли, как в защитной атмосфере аргона, так и без нее, при этом заметное влияние на результат получения нанотрубок это не оказывало.

Нановолокнистая модификация углерода диаметром 30-40 нм (углеродные нанотрубки) была получена в результате длительного процесса механоактивации (время размола несколько больше 7 часов) в упомянутом режиме работы мельницы при названных параметрах ее работы. Процесс реализовывался лавинообразно после накопления энергии механоактивации (как видно из приводимых иллюстраций, после 6 часов активации процесс трансформации аморфного наноуглерода в углеродные нанотрубки еще не начался, а к исходу 8 часа, доля нанотрубок составляет уже свыше 60-70% объема активируемого материала, и к исходу 10 часов, составляет уже 100%.

Образованию нановолокнистой структуры углеродного материала в процессе механохимической обработки способствовали: фрактальная, нанопористая структура аморфного углерода, синтезированного в процессе пиролитического воздействия на сфагновый мох; цикличность проведения механохимической обработки; специфичность механизма измельчения (отсутствие ударного воздействия) в варио-планетарной мельнице. Исследования с помощью просвечивающей электронной микроскопии (ПЭМ) позволяют утверждать, что после длительной механоактивации пиролитической модификации углерода из сфагнового мха, действительно образуются многостенные нанотрубки. Сформированные нанокомпозитные системы имеют довольно высокую развитую поверхность (Sуд=370-550 м2/г и обладают повышенной химической и структурной активностью. Им присуща высокая чистота (см. табл.1, показывающую состав нанотрубок после 10 часов механоактивации). На фиг.9 показано изображение нановолокна, подтверждающее его трубчатую структуру.

Таблица 1
Содержание химических элементов в нановолокнистом углероде после 10 часов механоактивации
Номер спектра Содержание химических элементов (мас.%)
O С W Ni Cu Со Fe Ti
Спектр 1 0,25 99,1 0,12 0,005 0,007 0,12 0,09 0,017
Спектр 2 0,24 99,0 0,11 0,004 0,011 0,15 0,07 0,011
Спектр 3 0,27 99,1 0,10 0,008 0,010 0,14 0,05 0,005
Спектр 4 0,23 99,2 0,08 0,004 0,009 0,12 0,03 0,029


СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 171-180 из 281.
20.12.2015
№216.013.99a1

Котел водогрейный прямоугольного поперечного сечения

Изобретение относится к энергетике и может быть использовано в системах теплоснабжения производственных и жилых зданий. Котел включает фундамент, на котором смонтированы топка и конвективный блок, при этом пространство топки, соответственно снизу, спереди, с боков и сверху, ограничено наклонной...
Тип: Изобретение
Номер охранного документа: 0002570954
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9d00

Способ оценки здоровья морских двустворчатых моллюсков и состояния среды их обитания

Изобретение относится к экологии, охране окружающей среды, иммунологии и физиологии, и может быть использовано для оценки здоровья морских двустворчатых моллюсков, подверженных и не подверженных стрессу, и состояния среды их обитания. Для этого у двустворчатых моллюсков берут гемолимфу,...
Тип: Изобретение
Номер охранного документа: 0002571817
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.9fe4

Способ культивирования опухолевых стволовых клеток глиобластомы

Изобретение относится к биохимии. Раскрыт способ культивирования опухолевых стволовых клеток глиобластомы. Способ включает отбор таких клеток, высевание и инкубирование в культуральном сосуде. Отбирают не менее 0,5 г материала глиобластомы, который измельчают до кусочков размером не более 5×5×5...
Тип: Изобретение
Номер охранного документа: 0002572574
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.be31

Способ получения октагалактуронида

Способ получения октагалактуронида включает кислотный гидролиз пектина с последующим отделением жидкой фазы от нерастворимого остатка пектина и выделением из нее октагалактуронида. Причем в качестве пектина используют низкоэтерифицированный пектин со степенью этерификации не более 30%....
Тип: Изобретение
Номер охранного документа: 0002576535
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c36e

Ротор электромашины

Изобретение относится к области электротехники. Технический результат - повышение надёжности ротора. Ротор электромашины содержит полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, полюса из материала с высокой магнитной...
Тип: Изобретение
Номер охранного документа: 0002574606
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c847

Торцевое разъемное соединение оболочек прочного корпуса подводного аппарата

Изобретение относится к морской технике и касается конструирования соединений оболочек прочных корпусов подводных аппаратов. Соединение содержит наружное уплотнение, соединяющее сопрягаемые оболочки, выполненные без выступающих наружных деталей, с применением эластичного уплотнителя с хомутом....
Тип: Изобретение
Номер охранного документа: 0002578905
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c96b

Опорный подшипниковый узел

Изобретение относится к области машиностроения и предназначено для использования в высокоскоростных механизмах. Опорный подшипниковый узел включает вал (2), подшипник, в зазоре между которыми размещены лепестки, выполненные с возможностью газодинамического формирования газовой смазки,...
Тип: Изобретение
Номер охранного документа: 0002578942
Дата охранного документа: 27.03.2016
10.03.2016
№216.014.ca4b

Способ подводного массажа

Изобретение относится к медицине, а именно к лечебному массажу, и может бить использовано для проведения гидромассажа. Осуществляют вибрационное воздействие на конечности пациента в ванне с жидкой средой посредством гидроакустических волн в звуковом диапазоне от 50 Гц до 700 Гц....
Тип: Изобретение
Номер охранного документа: 0002577177
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc01

Способ производства йогурта

Изобретение относится к молочной промышленности. Способ получения йогурта включает пастеризацию молока, охлаждение до температуры заквашивания, внесение закваски, сквашивание, охлаждение, внесение наполнителя из растительного сырья, перемешивание, упаковывание в тару. В качестве наполнителя...
Тип: Изобретение
Номер охранного документа: 0002577998
Дата охранного документа: 20.03.2016
10.03.2016
№216.014.cc92

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании электроприводов манипуляторов. Техническим результатом является обеспечение инвариантности динамических свойств электропривода к непрерывным и быстрым изменениям его моментных нагрузочных характеристик....
Тип: Изобретение
Номер охранного документа: 0002577204
Дата охранного документа: 10.03.2016
Показаны записи 171-180 из 281.
10.09.2015
№216.013.7823

Вертикально-осевая ветроустановка

Изобретение относится к области ветроэнергетики. Вертикально-осевая ветроустановка состоит из опорных колец с приваренными к ним вертикальными лопастями, ступицы, жестко зафиксированной на мачте. Среднее опорное кольцо соединено радиальными стержнями с внешней поверхностью корпуса ротора...
Тип: Изобретение
Номер охранного документа: 0002562344
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7e15

Котел водогрейный прямоугольного поперечного сечения

Изобретение относится к энергетике и может быть использовано в системах теплоснабжения производственных и жилых зданий. Котел водогрейный прямоугольного поперечного сечения включает фундамент, на котором смонтированы топка и конвективный блок, пространство топки ограничено наклонной...
Тип: Изобретение
Номер охранного документа: 0002563874
Дата охранного документа: 27.09.2015
20.10.2015
№216.013.861c

Вертикально-осевая ветроустановка

Изобретение относится к области ветроэнергетики и электротехники. Вертикально-осевая ветроустановка содержит ротор, включающий ряд вращающихся вокруг вертикальной оси вертикальных лопастей и ступицу, располагаемую в центре вращения, в которой скомпонован электрогенератор. Статор охвачен...
Тип: Изобретение
Номер охранного документа: 0002565935
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8695

Состав каши быстрого приготовления

Изобретение относится к пищевой промышленности, в частности к составам каш быстрого приготовления. Состав каши содержит зерновые хлопья - гречневые, ржаные и рисовые, белковый материал - маточное молочко, растительный комплекс - смесь, включающая порошки ламинарии, топинамбура и моркови, и соль...
Тип: Изобретение
Номер охранного документа: 0002566056
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.882e

Конвективный блок водогрейного котла

Изобретение относится к энергетике и может использоваться в водогрейных котлах. Конвективный блок котла включает два конвективных газохода с теплообменными поверхностями, которые содержат прямолинейные поперечно обтекаемые коридорные трубные пучки и вертикальные стояки, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002566465
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.882f

Водогрейный котел

Изобретение относится к котельной технике, в частности к водотрубным водогрейным котлам с тепловой производительностью до 4 мВт, и может быть использовано в системах теплоснабжения производственных и жилых зданий. Котел отличается тем, что нижние продольные коллекторы котла сообщены поперечными...
Тип: Изобретение
Номер охранного документа: 0002566466
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8830

Водогрейный котел

Изобретение относится к котельной технике, в частности к водотрубным водогрейным котлам, с тепловой производительностью до 4 мВт, и может быть использовано в системах теплоснабжения производственных и жилых зданий. Котел содержит топку, пространство которой ограничено топочной решеткой,...
Тип: Изобретение
Номер охранного документа: 0002566467
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.910f

Состав для приготовления хлеба из пшеничной муки

Изобретение относится к производству хлеба из пшеничной муки высшего сорта с высокой пищевой и биологической ценностью, предназначенного для массового питания. Состав для приготовления хлеба пшеничного включает муку пшеничную хлебопекарную высшего сорта, фасолесодержащий компонент, а также...
Тип: Изобретение
Номер охранного документа: 0002568751
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9133

Самонастраивающийся электропривод

Изобретение относится к области автоматического управления электроприводами, в датчиках скорости которых возникают дефекты. Технический результат заключается в обеспечении нечувствительности работы электропривода к искажению показаний в датчике скорости вращения вала электропривода за счет...
Тип: Изобретение
Номер охранного документа: 0002568787
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9135

Самонастраивающийся электропривод

Изобретение относится к области автоматического управления электроприводами, в которых существенно повышаются величины моментов сухого трения. Технический результат заключается в обеспечении инвариантности электропривода к величине момента сухого трения, что обеспечивает неизменное качество в...
Тип: Изобретение
Номер охранного документа: 0002568789
Дата охранного документа: 20.11.2015
+ добавить свой РИД