×
20.02.2014
216.012.a3ac

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ЭФФЕКТИВНОСТИ СТЕРЖНЕЙ РЕГУЛИРОВАНИЯ РЕАКТОРНОЙ УСТАНОВКИ

Вид РИД

Изобретение

№ охранного документа
0002507615
Дата охранного документа
20.02.2014
Аннотация: Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности одного или групп стержней регулирования реакторных установок (РУ) в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений в режимах доброса. Эффективность стержней регулирования определяется по изменениям реактивности РУ, которые происходят в результате их перемещения. Выводят РУ в стационарное, критическое состояние. Измеряют полное число нейтронов РУ n(t) как скорость счета детектора нейтронов во времени v(t) непрерывно, с интервалом дискретности Δt. Изменяют мощность РУ путем сброса исследуемых стержней регулирования. Вычисляют реактивность после сброса из уравнений баланса нейтронов по результатам измерений v(t), которые используют с поправкой посредством умножения значения скорости счета детектора v(t) на коэффициент δk. Этот коэффициент больше или меньше 1, k - номер группы сброшенных стержней. Технический результат - повышение точности определения эффективности стержней регулирования за счет минимизации характерных методических погрешностей определений реактивности. 4 з.п. ф-лы, 2 ил.

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности одного или групп стержней регулирования реакторных установок (РУ): атомных станций, критсборок, исследовательских реакторов в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений. На практике требуется, в ряде случаев, определять эффективность стержней регулирования после сброса и последующих добросов. Первый сброс проводят из одного исходного критического или околокритического состояния (см., например, «Руководящий документ. Методики расчета нейтронно-физических характеристик по данным физических экспериментов на энергоблоках атомных станций с реакторами ВВЭР-1000 (РД ЭО 0151-2004)». стр.51-52 рис.14, 16). Эффективность стержней регулирования определяется по изменениям реактивности РУ до и после каждого из последовательных сбросов стержней регулирования:

где Δρ$ - искомая эффективность стержней регулирования;

(ρ$)к-1, (ρ$)к - измеренные значения реактивности РУ до сброса и после сброса стержней регулирования, значения реактивности измеряются в долларах, где к - номер группы сброшенных стержней

Изменения реактивности происходит в результате перемещения стержней регулирования так, что, если положение стержней регулирования в РУ не меняется, то изменения реактивности не происходит. Реактивность есть параметр уравнений баланса нейтронов (см., например, Нечаев Ю.Л. Космические ядерные) энергоустановки «Ромашка» и «Енисей» стр.20, 21. Москва, Издат, 2011).

Известен способ определения вводимой реактивности, а, следовательно, эффективности стержней при однократном их сбросе, а также при любом числе последующих сбросов (см., например, Казанский Ю.Л. и др. Эксперементальные методы физики реакторов, Энергоатомиздат. 1984 г. стр.93.). - прототип), заключающийся в том, что выводят РУ в стационарное состояние, вводят в РУ исследуемые стержни регулирования, измеряют n(t) - полное число нейтронов в РУ до, во время и после ввода стержней, после чего из уравнений баланса нейтронов вычисляют реактивность по результатам измерений значений функции n(t). Интервал дискретности измерений значений функции n(t) во времени Δt≤5 секунд. Допускаются добросы стержней регулирования. При сбросах стержней регулирования промежуток времени от начала движения до их останова обычно не превышает 5 секунд.

Важно отметить, что допускается измерять значения функции n(t) в относительных единицах как скорость счета экспериментального детектора v(t), если коэффициент пропорциональности ε между n(t) и v(t) не изменяется во времени:

где ε - коэффициент пропорциональности

Значение ε не изменяется во времени, если не изменяется во времени в результате перемещения стержней регулирования пространственно-энергетическое распределение нейтронов по объему РУ. Принятие допущения о неизменности ε технически упрощает задачу вычислений эффективности стержней регулирования, т.е. вычисления вводимой реактивности, но приводит к характерным методическим погрешностям. Источник методической погрешности в том, что значения ε изменяется скачком после сброса стержней регулирования, так как изменяется состав РУ и пространственно-энергетическое распределение нейтронов по объему РУ. Вследствие этого результат вычислений ρ$ зависит от места расположения экспериментального детектора. Отличия в результатах вычислений ρ$ в зависимости от места расположения экспериментального детектора могут достигать ~20% от истинной величины уже при первом сбросе. Нет оснований считать, что эти отличия при добросах уменьшатся. Расчет поправок на изменения ε задача, по сложности сравнимая с вычислениями собственно реактивности, а это, соответственно, усложняет метрологическую аттестацию вычислений ρ$ по результатам измерений n(t), и ставится вопрос о целесообразности постановки подобных экспериментов вообще.

Техническим результатом, на которое направлено изобретение, является повышение точности определения эффективности стержней регулирования за счет минимизации характерных методических погрешностей после первого сброса и последующих добросов.

Достигается эта минимизация посредством ввода соответствующих поправок измеренных значений n(t). Для этого предложен способ определения эффективности стержней регулирования РУ, заключающийся в том, что включают экспериментальную установку для регистрации значений функции n(t) во времени, непрерывно с интервалом дискретности Δt, от начала до конца эксперимента. Эти значения n(t) измеряют как скорость счета v(t) экспериментального детектора во времени. Выводят РУ в стационарное, критическое состояние. Сбрасывают первую группу исследуемых стержней регулирования, рекомендуется через ~ 20 секунд сбрасывать следующую группу стержней регулирования и т.д.

Способ основан на том, что при расчете ρ$ из уравнений баланса нейтронов по результатам измерений v(t) наблюдается тренд (монотонное изменение) вычисленных значений ρ$ в сторону истинных значений. Этот тренд (следствие замены функции n(t) ее паллиативом v(t)) наблюдается в течение некоторого времени с выходом на асимптоту (см., например, «Экспериментальные методы физики реакторов» Ю.А. Казанский, Е.С. Матусевич. М.: Энергоатомиздат, 1984, стр.100). Причиной тренда является скачкообразное изменение пространственно-энергетического распределения нейтронов по объему РУ. Как следствие, изменение значения ε после каждого сброса стержней регулирования. Если после очередного сброса тренд не наблюдается, то результат расчета ρ$ по измерениям v(t) с помощью этого детектора нейтронов соответствует истинному значению с точностью до случайных экспериментальных погрешностей. В большинстве случаев происходит изменение значения ε в месте расположения детектора нейтронов и необходимо вводить поправку. Операция введения поправки сводится к умножению поправляемых величин v(t) на число δk большее или меньшее 1, где k - номер группы сброшенных стержней.

Для реализации предложенного способа определений ρ$ следует после сброса 1-й группы стержней регулирования умножить на δ1 значение v(0) - результат измерений значения n(t) до сброса 1-й группы стержней регулирования. Численное значение поправки δ1 определяется по отсутствию тренда вычисленных значений ρ$ из уравнений баланса нейтронов по результатам измерений значения v(0) и v(t) на временном отрезке [Т1-Т2], где Т1 - момент останова 1-й группы сброшенных стержней регулирования, Т2 - момент до начала сброса 2-й группы стержней регулирования. После сброса 2-й группы стержней регулирования следует умножить на число δ2 все измеренные значения v(t) на временном отрезке [Т3-Т4], где Т3 - момент останова 2-й группы сброшенных стержней регулирования, Т4 - момент до начала сброса 3-й группы стержней регулирования. Способ определений ρ$ после сброса 3-й группы и последующих групп стержней регулирования реализуется аналогично посредством умножения на число δk соответствующих измеренных значения v(t) на временном отрезке от времени останова сброшенных стержней регулирования до момента доброса следующей группы стержней регулирования. Численные значения поправок определяется по отсутствию тренда вычисленных значений ρ$ из уравнений баланса нейтронов.

В подтверждение возможности реализации измерений эффективности стержней регулирования заявленным способом без методических погрешностей проведено численное моделирование эксперимента для случая трех сбросов групп стержней регулирования в течение одной секунды каждый сброс, с интервалами между сбросами 20 секунд. Моделировались эффективности стержней регулирования: 1-я группа стержней регулирования эффективностью 0.5$, 2-я группа стержней регулирования эффективностью 1$, 3-я группа стержней регулирования эффективностью 2$. Моделировалось изменение следующих параметров: ε10=1.2 после первого сброса, ε21=0.9 после второго сброса и ε32=1.1 после третьего сброса, где ε0, ε1, ε2, ε3 - коэффициенты пропорциональности до, после первого, после второго и после третьего сбросов групп стержней регулирования.

На фигуре 1 в полулогарифмическом масштабе приведены кривые, отображающие результаты вычислений функции v(t) из уравнений баланса нейтронов после последовательных трех сбросов групп стержней регулирования из одного (до сброса стержней регулирования) критического состояния. Кривая 1 отображает результаты вычислений v(t) для частного случая, когда ε0123. В этом частном случае, редко реализуемом на практике, результаты вычислений эффективности групп стержней регулирования из уравнений баланса нейтронов по значениям функции v(t) будут получены без методических погрешностей. Кривая 2 отображает смоделированные результаты вычислений v(t), когда ε10=1.2 после первого сброса, ε21=0.9 после второго сбросай ε32=1.1 после третьего сброса. Кривая 3 отображает результаты вычислений v(t) с поправками значений функции v(t), приведенных на кривой 2 так, чтобы исключить тренд в результатах расчета ρ$ по поправленным значениям: величина v(0) умножена на 1.44, все значения v(t) на временном отрезке [Т1-Т2] умножены на 1.6, все значения v(t) на временном отрезке [Т3-Т4] умножены на 1.309.

На фигуре 2 приведены результаты вычислений ρ$ по значениям функций v(t), приведенным на фигуре 1, из уравнений баланса нейтронов. Результаты расчетов ρ$ демонстрируют на временных отрезках [1,20] секунд [21-40] секунд и [41-60] секунд изменения вычисленных значений по направлению к истинным значениям.

Данные, приведенные на фигурах 1 и 2, подтверждают возможность измерять эффективности групп стержней регулирования предложенным способом при их трех последовательных сбросов из критического состояния с точностью до случайных погрешностей. Ограничений по количеству сбросов стержней регулирования нет. Определения ρ$ предложенным способом могут быть проведены всегда. Однако тренд значений ρ$, рассчитанных из уравнений баланса нейтронов, по результатам измерений v(t) постепенно уменьшается но мере увеличения суммарной эффективности сброшенных стержней регулирования. С уменьшением тренда происходит закономерный рост случайных погрешностей определения ρ$, соответственно повышаются требования к качеству измерений v(t). В случаях, когда суммарная эффективность сброшенных стержней превышает 5$, случайная погрешность измерений эффективности сброшенных стержней может оказаться неприемлемой.

Таким образом, предложенным способом определяются искомые значения реактивности с точностью до случайных погрешностей из уравнений баланса нейтронов по результатам измерений значений скоростей счета детекторов нейтронов с учетом поправок. Численные значения поправок к каждому массиву измеренных значений скоростей счета после очередного сброса подбирается такими, чтобы исключить тренд в результатах расчета реактивности. Измерения реактивности без методических погрешностей, с точностью до случайных упростит метрологическую аттестацию результатов этих измерений и определения эффективности стержней регулирования.


СПОСОБ ИЗМЕРЕНИЯ ЭФФЕКТИВНОСТИ СТЕРЖНЕЙ РЕГУЛИРОВАНИЯ РЕАКТОРНОЙ УСТАНОВКИ
СПОСОБ ИЗМЕРЕНИЯ ЭФФЕКТИВНОСТИ СТЕРЖНЕЙ РЕГУЛИРОВАНИЯ РЕАКТОРНОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 259.
29.11.2019
№219.017.e7a3

Кристаллический материал на основе флюоритоподобных систем для сра-лазеров

Изобретение относится к кристаллам, предназначенным для применения в твердотельных лазерах, а именно в CPA-лазерах (от английских слов “chirp pulse amplification” – “усиление чирпированного импульса”) - короткоимпульсных лазерах с высокой пиковой мощностью. Кристаллический материал на основе...
Тип: Изобретение
Номер охранного документа: 0002707388
Дата охранного документа: 26.11.2019
06.12.2019
№219.017.ea48

Ротационная магнитная холодильная машина

Изобретение относится к холодильной технике, а именно к холодильным машинам, использующим магнитный материал в качестве рабочего тела и магнитокалорический эффект для охлаждения. Ротационная магнитная холодильная машина содержит корпус, внутри которого размещен ротор, систему теплоносителя,...
Тип: Изобретение
Номер охранного документа: 0002708002
Дата охранного документа: 03.12.2019
19.12.2019
№219.017.eee5

Способ диагностики пучков ультрарелятивистских электронов

Изобретение относится к области диагностики пучков ультрарелятивистских электронов, используемых на линейных ускорителях, в лазерах на свободных электронах, синхротронах 4-го поколения, в частности определения их поперечных размеров. Техническим результатом является возможность измерения...
Тип: Изобретение
Номер охранного документа: 0002709425
Дата охранного документа: 17.12.2019
29.12.2019
№219.017.f404

Способ создания двумерного ферромагнитного материала дисилицида гадолиния со структурой интеркалированных слоев силицена

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSiсо структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока...
Тип: Изобретение
Номер охранного документа: 0002710570
Дата охранного документа: 27.12.2019
17.01.2020
№220.017.f643

Способ переработки отработавшего топлива тепловыделяющих сборок ядерного реактора

Изобретение относится к способу переработки отработавшего топлива тепловыделяющих сборок ядерного реактора Способ включает загрузку отработавшего ядерного топлива и материала-восстановителя в тигли после выдержки в станционном бассейне выдержки вместе с металлом-восстановителем, заполнение...
Тип: Изобретение
Номер охранного документа: 0002711214
Дата охранного документа: 15.01.2020
05.03.2020
№220.018.0967

Способ изготовления полупроводниковых бета-вольтаических ячеек на основе радионуклида никель-63

Изобретение относится к способу изготовления полупроводниковых бета-вольтаических преобразователей на основе радионуклида никель-63 для использования в автономных источниках электрического питания. Способ изготовления полупроводниковых бета-вольтаических ячеек на основе радионуклида никель-63,...
Тип: Изобретение
Номер охранного документа: 0002715735
Дата охранного документа: 03.03.2020
18.03.2020
№220.018.0ca3

Способ получения полимерсодержащей композиции силибина

Настоящее изобретение относится к способу получения полимерсодержащей композиции силибина. Данный способ включает стадии: приготовления раствора силибина и сополимера молочной и гликолевой кислот (50:50) в смеси этилацетат-дихлорметан (неводная фаза); смешивания указанного раствора с раствором...
Тип: Изобретение
Номер охранного документа: 0002716706
Дата охранного документа: 16.03.2020
04.06.2020
№220.018.23dd

Способ создания двумерных ферромагнитных материалов euge и gdge на основе германена

Изобретение относится к технологии получения двумерных ферромагнитных материалов EuGe или GdGe, которые могут быть использованы при создании компактных спинтронных устройств. Способ создания двумерных ферромагнитных материалов EuGe и GdGe на основе германена заключается в осаждении атомарного...
Тип: Изобретение
Номер охранного документа: 0002722664
Дата охранного документа: 02.06.2020
05.06.2020
№220.018.247a

Энергетическая установка с топливным элементом для арктической зоны

Изобретение относится к области электротехники, а именно к устройствам для получения электроэнергии прямым преобразованием энергии топлива (водорода), и может быть использовано в условиях арктической зоны эксплуатации при резко отрицательных температурах окружающей среды. Энергетическая...
Тип: Изобретение
Номер охранного документа: 0002722751
Дата охранного документа: 03.06.2020
07.06.2020
№220.018.24e5

Зарядная система для электрического транспорта

Изобретение относится к зарядной системе для электрического транспорта, характеризующейся, по меньшей мере, одним распределительным газопроводом, соединяющим магистральный газопровод, как минимум, с одним топливным элементом, который последовательно соединен посредством токопроводящих линий с...
Тип: Изобретение
Номер охранного документа: 0002722894
Дата охранного документа: 04.06.2020
Показаны записи 151-151 из 151.
15.03.2019
№219.016.e0bf

Способ определения эффективного коэффициента размножения при пуске водо-водяного реактора без выхода в критическое состояние

Изобретение относится к способам контроля ядерных реакторов. Изобретение позволяет определить эффективный коэффициент размножения k в диапазоне от 0.95 до 0.99 без проведения предварительных экспериментов по измерению эффективной интенсивности источника нейтронов Q. Для этого измеряют поток...
Тип: Изобретение
Номер охранного документа: 0002368023
Дата охранного документа: 20.09.2009
+ добавить свой РИД