×
15.03.2019
219.016.e0bf

СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОГО КОЭФФИЦИЕНТА РАЗМНОЖЕНИЯ ПРИ ПУСКЕ ВОДО-ВОДЯНОГО РЕАКТОРА БЕЗ ВЫХОДА В КРИТИЧЕСКОЕ СОСТОЯНИЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002368023
Дата охранного документа
20.09.2009
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам контроля ядерных реакторов. Изобретение позволяет определить эффективный коэффициент размножения k в диапазоне от 0.95 до 0.99 без проведения предварительных экспериментов по измерению эффективной интенсивности источника нейтронов Q. Для этого измеряют поток нейтронов n(t), излучаемый ВВЭР, как скорости счета детектора нейтронов v(t) в исходном стационарном состоянии и при увеличении мощности ВВЭР путем уменьшения концентрации борной кислоты C(t) измеряют уменьшение C(t) во времени с интервалом дискретности Δt=1 секунда, измеряют число отсчетов детектора нейтронов S за время Т, вычисляют эффективный коэффициент размножения по формуле: k(t)=k0j+Δk(C(t)), где k0j - эффективный коэффициент размножения в исходном стационарном состоянии, Δk(C(t)) - зависимость приращения эффективного коэффициента размножения от концентрации борной кислоты. Зная v(0) и k(t), из уравнений точечной кинетики путем несложных расчетов получают искомое значение эффективного коэффициента размножения в нулевой момент времени. Изобретение направлено на снижение трудоемкости работ при эксплуатации реакторов. 3 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к физике ядерных реакторов, а именно к обеспечению ядерной безопасности при пуске водо-водяных ядерных реакторов, именуемых далее ВВЭР.

Пуски ВВЭР на заключительном этапе проводят посредством уменьшения концентрации борной кислоты в замедлителе. Контроль состояния реактора при пуске проводят различными способами, например по измерению интенсивности свечения Вавилова-Черенкова (патент РФ №2046409, оп. 20.10.95).

Плавный переходной процесса изменения мощности ВВЭР вследствие изменений концентрации борной кислоты может длиться в течение нескольких часов. Проблема определения kэфф - эффективного коэффициента размножения ВВЭР при пуске - является актуальной. Эксплуатация реакторов регламентируется рядом нормативных и руководящих документов, основой которых являются нормы и правила НП-082-07. Документ НП-082-07 предписывает контроль величины kэфф - эффективного коэффициента размножения и реактивности - ρ=(kэфф-1)/kэфф реакторов атомных станций при проведении на них ядерно-опасных работ, к числу которых относятся пуски реакторов атомных станций.

Известен универсальный способ определения ρ(t), принятый в качестве прототипа (Казанский Ю.А., Матусевич Е.С. «Экспериментальные методы физики реакторов». М.: Энергоатомиздат, 1984., стр.93).

Для этого предварительно любым известным способом определяют эффективную интенсивность источника нейтронов - Qэфф (см., например, патенты РФ №№2231145, 2302676 и др.), измеряют детектором нейтронов величину потока нейтронов - n(t), излучаемого реактором, и рассчитывают ρ(t) из точечных уравнений кинетики. Значения функции n(t) во времени измеряют как скорость счета детектора нейтронов - v(t). Зная ρ(t), можно определить kэфф. Основной недостаток способа-прототипа заключается в необходимости проведения предварительных экспериментов по измерению Qэфф, что является самостоятельной, сложной и трудоемкой задачей.

Техническим результатом, на который направлено изобретение, является определение kэфф и соответственно ρ способом, не требующим проведения предварительных экспериментов по измерению Qэфф и без выхода реактора в критическое состояние. В итоге снижается трудоемкость работ при пусках ВВЭР и повышается ядерная безопасность за счет оценки kэфф в диапазоне от 0.95 до 0.99, достаточном для выполнения требований, действующих в настоящее время российских нормативных и руководящих документов по ядерной безопасности.

Для этого предложен способ определения эффективного коэффициента размножения - kэфф при пуске водо-водяного реактора ВВЭР без выхода в критическое состояние, заключающийся в измерении потока нейтронов n(t), излучаемого ВВЭР, как скорости счета детектора нейтронов v(t) при увеличении мощности ВВЭР и вычислении kэфф, при этом измеряют скорость счета детектора нейтронов в исходном стационарном состоянии ВВЭР в нулевой момент времени v(0), увеличивают мощность ВВЭР путем уменьшения концентрации борной кислоты C(t), измеряют уменьшение концентрации борной кислоты C(t) во времени с интервалом дискретности Δt=l секунда, измеряют число отсчетов детектора нейтронов ST за время Т, вычисляют ряд значений эффективного коэффициента размножения по формуле

kэфф(t)=k0j+Δk(C(t)),

где k0j - эффективный коэффициент размножения в исходном стационарном состоянии, определяемый как k0j=0.99-0.0004·(j-1), где j=1, 2, 3 …101,

Δk(C(t)) - зависимость приращения эффективного коэффициента размножения от концентрации борной кислоты, штатная характеристика реактора, и, зная v(0) и kэфф(1), из уравнений точечной кинетики реакторов вычисляют поток нейтронов n(t) в каждый момент времени t в промежутке (0,Т) с интервалом дискретности Δt=1 секунда, вычисляют числа (N)j=(n1+n2+…ni……nт)j, где слагаемое ni равно значению функции n(t) при t=i секунд в j-том варианте расчетов, определяют значение индекса j=1, 2, 3, …101, при котором число (N)j имеет наименьшее отличие по абсолютной величине от числа Sт, а за искомое значение эффективного коэффициента размножения в нулевой момент времени принимают параметр k0j при вышеуказанном значении индекса j.

При этом выбирают время Т равным 6000 секунд.

Концентрацию борной кислоты уменьшают так, чтобы приращение эффективного коэффициента размножения составляло не менее чем 0.005 в течение времени Т.

Выбирают скорость счета детектора нейтронов v(0) в исходном стационарном состоянии не менее 10 отсчетов в секунду.

Предложенный способ оценки kэфф основан на том, что изменение во времени значений функции n(t) вследствие изменения концентрации борной кислоты зависит, при прочих равных условиях, только от одного параметра k0 - значения функции kэфф(1) в исходном стационарном состоянии ВВЭР в момент времени t=0. Кроме того, необходимо знать значения Δk(C(t)) - увеличение kэфф в зависимости от уменьшения концентрации борной кислоты, где C(t) текущее значение концентрации борной кислоты - эта зависимость является штатной характеристикой реактора. Конкретно заданные числовые значения величин в перечисленных условиях рекомендованы для осуществления способа исходя из обеспечения требуемой достоверности оценок kэфф.

На чертежах представлены результаты моделирующих расчетов.

На фиг.1 показана зависимость скорости счета детектора вследствие изменения концентрации борной кислоты для ряда значений k0j.

На фиг.2 представлены значения массива чисел (N)j в зависимости от k0j при T=6000 секунд и при v(0)=10 отсчетов в секунду.

На фиг.3 представлены значения массива чисел (N)j в зависимости от k0 при v(0)=100 отсчетов в секунду, за время эксперимента 600 секунд.

Предложенный способ определения kэфф рассмотрим при 6000 с ≥ t ≥ 0 с. Способ реализуют при пуске ВВЭР следующим образом:

1) измеряют скорость счета v(0) детектора нейтронов в исходном стационарном состоянии ВВЭР в момент времени t=0. Выполнение условия относительно v(0)=10 отсчетов в секунду достигается посредством выбора соответствующего типа детектора импульсного канала измерения потока нейтронов и места размещения детектора относительно центра ВВЭР, за его корпусом.

2) уменьшают концентрацию борной кислоты со скоростью, обеспечивающей значение функции Δk(C(t)) не менее 0.005 при Т=6000 с;

3) измеряют уменьшение концентрации борной кислоты - C(t) во времени с интервалом дискретности Δt=1 секунда;

4) измеряют Sт - число отсчетов этого детектора за 6000 секунд.

Полученные экспериментальные данные, с учетом того, что известны значения функции kэфф(С), достаточны для определения kэфф в результате обработки по следующему алгоритму. Задается ряд значений параметра k0 по формуле:

Эффективный коэффициент размножения kэфф(1) как функция времени представляется в следующем виде:

где Δk(C(t)) - приращение kэфф, рассчитанное по результатам измерений C(t).

Известные значения v(0) и функции kэфф(t) используют для определения n(t) на временном отрезке [0, 6000] секунд в результате численного решения уравнений точечной кинетики (Дж.Р.Кипин Физические основы кинетики ядерных реакторов, стр.299-300, перевод с английского, Атомиздат, 1967 г.). Значения функции kэфф(1) варьируются в соответствии с формулой (2). В результате вариантных расчетов вычисляют 101 значений чисел (N)j=(n1+n2+…ni……nT)j, где слагаемое ni равно значению функции n(t) при t=i секунд от начала измерений в j-том варианте расчетов. Компьютерная программа из 101 чисел расчета (N)j выберет то число, которое имеет наименьшее отличие по абсолютной величине от экспериментального значения параметра Sт, определит значение индекса j и искомое значение k0, рассчитанное по формуле (1). Если компьютерная программа по результатам измерений Sт не найдет значения k0 в диапазоне (0.99-0.95), то будет выдано сообщение kэфф>0.99 или kэфф<0.95.

В подтверждение возможности проведения предложенным способом оценок kэфф в заявленном диапазоне значений и заданной скорости уменьшения концентрации борной кислоты проведено численное моделирование эксперимента при v(0)=10 отсчетов в секунду. Функция kэфф(1) на временном отрезке [0, 6000] секунд задавалась в следующем виде:

Моделирование заключалось в формировании исходного массива чисел. Формировался массив чисел: Vi, где i=1, 2, 3, …6000 в результате численного решения уравнений точечной кинетики реакторов при значениях kэфф(t), заданных в виде (3), интервал дискретности при численном решении уравнений точечной кинетики: Δt=1 секунда. Массив чисел Vi имитирует экспериментальные данные, рассчитывают: (Sт=V1+Vi+Vi+…+Vт) - число, имитирующее отсчеты детектора за 6000 секунд.

При реализации алгоритма обработки данных функция kэфф(t) на временном отрезке [0, 6000] секунд в вариантных расчетах задавалась в следующем виде:

Значение аргумента t в формулах (3) и (4) задается в секундах с интервалом дискретности Δt=1 секунда. Значения функции kэфф(t), заданные в виде (4), использованы в численных расчетах n(t) из уравнений точечной кинетики при задании k0j по формуле (1). В результате вариантных расчетов вычислены 101 значений чисел (N)j=(n1+n2+..ni…nт)j. Компьютерная программа из 101 чисел расчета (N)j выбрала то, которое имеет наименьшее отличие по абсолютной величине от значения параметра Sт, определила значения индекса j=51 и искомое значение k0=0.97, рассчитанное по формуле 1.

На фиг.1 показана зависимость скорости счета детекторов вследствие изменения концентрации борной кислоты для ряда значений k0j. В виде точек представлен массив чисел Vi. При реализации алгоритма обработки данных образуются 101 массив чисел ni, являвшихся результатами численного решения уравнений точечной кинетики. Для наглядности показаны в виде линий результаты вычислений только при значениях k0j, равных 0.95, 0.96, 0.97, 0.98, 0.99.

На фиг.2 представлены значения массива чисел (N)j в зависимости от k0j при моделировании. Видно, что при v(0)=10 отсчетов в секунду можно за 6000 секунд достоверно оценить kэфф в заявленном диапазоне значений.

В качества альтернативы проведено моделирование эксперимента продолжительностью 600 секунд, но при v(0)=100 отсчетов в секунду. Прочие условия проведения эксперимента остались без изменения.

На фиг.3 представлены значения массива чисел (N)j в зависимости от k0j в этом варианте моделирования. Видно, что за время эксперимента 600 секунд тоже можно оценить kэфф в заявленном диапазоне значений, если v(0)≥100 отсчетов в секунду.

Таким образом, данный способ позволяет, не проводя трудоемких предварительных измерений Qэфф, определять при пуске без выхода в критическое состояние kэфф, что повышает ядерную безопасность работы ВВЭР.

Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
20.02.2019
№219.016.be8d

Способ изготовления мембранно-электродного блока с бифункциональными электрокаталитическими слоями

Изобретение относится к каталитической химии, а именно к способам изготовления мембранно-электродных блоков (МЭБ) с бифункциональными электрокаталитическими слоями на основе металлов платиновой группы, предназначенных для использования в обратимых (регенеративных) топливных элементах с твердым...
Тип: Изобретение
Номер охранного документа: 0002392698
Дата охранного документа: 20.06.2010
20.02.2019
№219.016.bfcb

Способ нанесения нанопокрытий и устройство для его осуществления

Изобретение относится к плазменному способу и устройству получения нанопокрытий, в частности пленок из окислов, карбидов и других соединений, и может применяться в радиоэлектронной, авиационной, энергетике и других отраслях промышленности. Изобретение позволит повысить энергию наносимых частиц...
Тип: Изобретение
Номер охранного документа: 0002371379
Дата охранного документа: 27.10.2009
20.03.2019
№219.016.e6d2

Способ обогащения изотопов селена

Изобретение относится к области разделения изотопов, а более конкретно к технологии разделения стабильных изотопов газовым центрифугированием. Согласно способу обогащение изотопов селена осуществляют газовым центрифугированием летучего химического соединения селена, в качестве которого на...
Тип: Изобретение
Номер охранного документа: 0002307701
Дата охранного документа: 10.10.2007
29.03.2019
№219.016.f47e

Многослойное композиционное покрытие с нанокристаллической структурой на режущем инструменте и способ его получения

Изобретение относится к многослойным покрытиям для режущего инструмента и способам их получения и может быть использовано в машиностроительном производстве. Покрытие содержит адгезионный, переходный и износостойкий слои тугоплавких соединений. При этом адгезионный слой содержит, по крайней...
Тип: Изобретение
Номер охранного документа: 0002413790
Дата охранного документа: 10.03.2011
19.04.2019
№219.017.2eb7

Плазменный конвертор газообразного и жидкого углеводородного сырья и топлив в синтез-газ на основе микроволнового разряда

Изобретение относится к микроволновым плазменным конверторам углеводородного сырья и топлив в синтез-газ малой мощности, для использования, например, в качестве источника водорода и синтез-газа в разработках мобильных и автономных энергоустановок на основе топливных элементов. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002318722
Дата охранного документа: 10.03.2008
19.04.2019
№219.017.32a9

Коаксиальный электромагнитный ускоритель

Изобретение относится к импульсной технике и предназначено для ускорения макротел. Коаксиальный электромагнитный ускоритель включает первичную обмотку в виде сверхпроводящего соленоида, подключенную к источнику постоянного тока. Внутри первичной обмотки коаксиально размещен магнитный экран в...
Тип: Изобретение
Номер охранного документа: 0002406279
Дата охранного документа: 10.12.2010
09.05.2019
№219.017.4d9d

Способ количественного определения атомов щелочного металла

Использование: для количественного определения атомов щелочного металла. Сущность: заключается в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары атомов щелочного металла и выдерживают образец при повышенной температуре, при...
Тип: Изобретение
Номер охранного документа: 0002335762
Дата охранного документа: 10.10.2008
09.06.2019
№219.017.7b85

Пьезорезистивный композит и способ его изготовления

Изобретение относится к области электротехники и предназначено для получения пьезорезистивного композита, используемого в устройствах, преобразующих механическую деформацию в электрический сигнал. Техническим результатом изобретения является упрощение способа и повышение его экономичности,...
Тип: Изобретение
Номер охранного документа: 0002337420
Дата охранного документа: 27.10.2008
Показаны записи 1-1 из 1.
20.02.2014
№216.012.a3ac

Способ измерения эффективности стержней регулирования реакторной установки

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности одного или групп стержней регулирования реакторных установок (РУ) в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений в режимах...
Тип: Изобретение
Номер охранного документа: 0002507615
Дата охранного документа: 20.02.2014
+ добавить свой РИД