×
20.02.2014
216.012.a281

Результат интеллектуальной деятельности: КАЛЬЦИЙ-ФОСФАТНОЕ БИОЛОГИЧЕСКИ АКТИВНОЕ ПОКРЫТИЕ НА ИМПЛАНТАТЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из конструкционных материалов. Покрытие на имплантате из корундовой или циркониевой керамики содержит промежуточный слой титана толщиной 5-50 мкм на имплантате, нанесенный в плазме непрерывного вакуумного дугового разряда, и слой кальций-фосфатного соединения, нанесенный электрохимическим методом анодирования титана в режиме искрового или дугового разрядов. Технический результат - расширение номенклатуры материалов для основы имплантатов, на которые можно наносить кальций-фосфатные биоактивные покрытия электрохимическим методом в условиях искрового или дугового разрядов. 3 пр.
Основные результаты: Кальций-фосфатное биологически активное покрытие на имплантате из корундовой или циркониевой керамики, содержащее промежуточный слой титана толщиной 5-50 мкм на имплантате, нанесенный в плазме непрерывного вакуумного дугового разряда, и слой кальций-фосфатного соединения, нанесенный электрохимическим методом анодирования титана в режиме искрового или дугового разрядов.

Изобретение относится к области медицинской техники, а именно к биологически совместимым кальций-фосфатным покрытиям, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из корундовой или циркониевой керамики.

В настоящее время широко распространены имплантаты из нержавеющей стали, титана и его сплавов, керамики. Имплантаты из нержавеющей стали нетоксичны, биоинертны - биологически не активны, их недостатком можно считать то, что из стали возможен выход в организм легирующих элементов. Имплантаты из керамики обладают высокими прочностными характеристиками, они также являются биоинертными, но из них в организм не выходят химические элементы. Имплантаты из титана и его сплавов обладают рядом преимуществ по сравнению с нержавеющей сталью и керамикой. Они имеют достаточную прочность, модуль упругости титановых сплавов сравним с модулем упругости костной ткани, на их поверхности присутствует оксидная пленка, обеспечивающая химическую стойкость в организме. Для придания имплантатам биоактивных свойств они должны содержать на своей поверхности покрытия, способствующие усилению остеосинтеза, например, имеющие в своем составе кальций и фосфор.

Такие покрытия могут быть сформированы методом газотермического [плазменного или газоплазменного] напыления гидроксиапатита (SU 1743024). Этот метод дает невысокую прочность сцепления покрытия с материалом основы из-за большого различия термо- и биомеханических характеристик материала основы и покрытия.

Известен способ изготовления имплантатов с плазмонапыленным многослойным покрытием (RU 2146535). Способ изготовления осуществляется методом плазменного напыления на титановую основу имплантата покрытий различной дисперсности и толщины, состоящих из пяти слоев: первых двух из порошка титана или гидрида титана различной дисперсности, последующих двух слоев из смеси титана или гидрида титана с гидроксиапатитом кальция, отличающихся содержанием компонентов в слоях, и наружного, пятого, слоя из гидроксиапатита кальция. Составы слоев обеспечивают максимальную прочность сцепления с прилегающими слоями. Напыление ведут послойно при различных режимах, обеспечивающих плавный переход от компактной структуры титановой основы имплантата через многослойную систему переходного покрытия к тонкому биологически активному поверхностному пористому слою. Многослойное покрытие на поверхности имплантата выполняет также роль амортизатора (демпфера), что максимально приближает созданную искусственную систему имплантата с пористым биологически активным покрытием к естественной биологической системе и повышает его механическую прочность. Однако, предлагаемый способ очень трудоемок, требует сложного оборудования. Кроме того, сцепление биологически активного слоя, нанесенного плазменным напылением, с основой недостаточно механически прочно, и слой легко растрескивается и отслаивается при нагрузках на имплантат.

В последнее время распространение получили покрытия, нанесенные на титан электрохимическими методами в условиях искрового или дугового разрядов. Такие методы достаточно технологичны, имеют высокую производительность и невысокие удельные материально-энергетические затраты.

В патенте RU 2154463 описан электрохимический метод нанесения покрытия в условиях искрового разряда. Процесс ведут в насыщенном растворе гидроксиапатита в фосфорной кислоте с концентрацией 5-20% или 3-5% суспензии гидроксиапатита дисперсностью менее 100 мкм в этом насыщенном растворе. Имплантат выполнен из титана и его сплавов, и процесс анодирования ведут импульсным или постоянным током в условиях искрового разряда при напряжениях до 150 В.

Процесс анодирования заключается в следующем. В электролит, содержащий кальций-фосфатные соединения, помещают образец из титана или его сплавов. При подаче напряжения в импульсном или постоянном режиме происходит взаимодействие титана и кислорода, выделившегося при электролизе воды, с образованием на поверхности оксида титана переменной валентности. С увеличением напряжения толщина оксидной пленки возрастает, процесс переходит в искровой режим и далее в дуговой. При этом за счет тепловых эффектов микродуг происходят фазовые реакции оксидной пленки титана и элементов электролита с образованием титано-кальций-фосфатных соединений. В поверхностных слоях покрытия содержание кальция и фосфора выше, чем во внутренних.

Способ позволяет получить на титановой основе биоактивное покрытие, содержащее оксиды титана, кальция и фосфора, которое имеет хорошее сцепление с основой и обладает остеокондуктивными свойствами, а также повышенной «биологической» фиксацией к тканям. Биоимплантаты с этим покрытием не вызывают нагноения, воспаления и аллергической реакции костной ткани, а также обладают хорошей интеграцией с окружающей тканью.

Этим способом можно наносить кальций-фосфатные покрытия на металлы вентильной группы (например, Zr, Та, Nb, Аl), которые, как и титан, всегда имеют на поверхности оксидную непроводящую пленку. Сталь, ее сплавы с добавлением кобальта, хрома и никеля не имеют на своей поверхности такой пленки. Прочный кальций-фосфатный слой на их поверхности таким методом создать невозможно.

Известен способ RU 2221904 нанесения покрытия на имплантат из титана и его сплавов, включающий анодирование имплантата импульсным или постоянным током в условиях искрового разряда с частотой следования импульсов 0,5-10,0 Гц в растворе фосфорной кислоты в течение 10-30 мин при постоянном перемешивании, причем анодирование ведут при напряжении 90-200 В и 20-35°С в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО, растворенный до пересыщенного состояния, или в растворе фосфорной кислоты с концентрацией 5-25%, содержащем растворенный порошок СаО до пересыщенного состояния и дополнительно 5-10% суспензии гидроксиапатита дисперсностью менее 70 мкм для создания суспензии. Этот способ позволяет удешевить получение биоактивного покрытия за счет экономии дорогостоящего гидроксиапатита.

Описанные процессы перспективны для применения, так как достаточно просты, дают покрытия с хорошими биологическими характеристиками и обладают высокой скоростью нанесения покрытий; требуемая толщина покрытия может быть обеспечена за время в несколько минут.

Все вышеописанные электрохимические методы нанесения покрытий в условиях микродугового или искрового разрядов применимы для нанесения покрытий только на металлы вентильной группы (титан, тантал, ниобий, цирконий), которые всегда имеют на поверхности оксидные непроводящие пленки. Из этой группы титан наиболее широко используется в качестве материала имплантатов, другие металлы достаточно дороги.

Однако титан плохо подходит для эндопротезов крупных суставов, несущих большую нагрузку, например, для протезов коленного или тазобедренного суставов. Для этих применений требуются более прочные конструкционные материала, например, такие как корундовая или циркониевая керамики. Керамика является химически стойким диэлектрическим материалом и без промежуточного проводящего подслоя из вентильных металлов (например, Zr, Та, Nb, Аl) не подвергается электрохимическому оксидированию.

Покрытие, получаемое методом анодирования в условиях искрового или дугового разрядов, выбираем за прототип.

Таким образом, задачей изобретения является разработка простого, быстрого и экономичного способа нанесения кальций-фосфатных биологически активных покрытий на имплантаты из керамики.

Техническим результатом изобретения является расширение номенклатуры материалов для основы имплантатов, на которые можно наносить кальций-фосфатные биоактивные покрытия электрохимическим методом в условиях искрового или дугового разрядов.

Для достижения указанного технического результата разработано покрытие на имплантате, основа которого выполнена из керамического материала, в частности из корундовой или циркониевой керамики. Покрытие содержит нанесенный на основу промежуточный слой металла вентильной группы (титана, тантала, ниобия или циркония) толщиной 5-50 мкм и последующий слой кальций-фосфатных соединений, сформированный электрохимическим способом анодирования слоя титана в условиях искрового или дугового разрядов.

Способ нанесения биологически активного покрытия включает два этапа. На первом этапе слой вентильного металла, например титана. толщиной 5-50 мкм наносят на материал основы в плазме непрерывного вакуумно-дугового разряда. Этот метод выбран потому, что он хорошо изучен и установки для его реализации отработаны. Покрытия в плазме непрерывного вакуумно-дугового разряда можно наносить на любые конструкционные материалы, включая керамику. Процесс обладает достаточно высокой скоростью нанесения металлических покрытий порядка 0,33 мкм/мин. Образующаяся при этом пленка вентильного металла имеет высокую адгезию к материалу основы.

На втором этапе на поверхности титановой пленки формируют слой кальций-фосфатных соединений. Этот процесс не отличается от прототипа, так как поверхностью для его нанесения служит вентильный металл, в частности титан. Нанесение покрытия ведут методом анодирования титана импульсным или постоянным током в условиях искрового или дугового разрядов. Анодирование проводят в растворе фосфорной кислоты концентрацией 5-33% с добавками соединений кальция до сверхпересыщенного состояния, т.е. состояния, когда в растворе присутствует значительное количество не растворенных соединений. Толщина промежуточного слоя вентильного металла, например титана, выбирается из следующих соображений. При толщине промежуточного слоя менее 5 мкм на второй стадии процесса оксидирование происходит на глубину, большую толщины слоя вентильного металла, что недопустимо. При толщине промежуточного слоя вентильного металла больше чем 50 мкм когезия суммарного покрытия на поверхности основы имплантата уменьшается, падает прочность покрытия в целом. Кроме того, увеличение толщины промежуточного слоя более необходимой для проведения второй стадии формирования покрытия ведет к неоправданным энергетическим и временным затратам.

Концентрация раствора фосфорной кислоты для второго этапа технологического процесса является существенным признаком. При низкой концентрации фосфорной кислоты у раствора уменьшается электропроводность, что требует повышения рабочего напряжения для возникновения искрового или дугового разряда. При высокой концентрации фосфорной кислоты в электролите повышается вязкость раствора, и процесс осаждения покрытия замедляется. В растворе с концентрацией фосфорной кислоты порядка 33% растворяется максимальное количество кальция. Оптимальные концентрации раствора лежат в диапазоне 5-33%.

Как и в известных способах, для удешевления способа в качестве соединений кальция можно использовать СаО. Для увеличения общего содержания кальция и фосфора в покрытии в раствор фосфорной кислоты целесообразно ввести порошок гидроксиапатита дисперсностью до 70 мкм в количестве 5-10%. Использование гидроксиапатита в виде дисперсной фазы приводит к сбалансированию соединений кальция и фосфора в покрытии, близкому к минеральному составу костной ткани.

В целом способ осуществляется следующим образом.

На первом этапе технологического процесса нанесения покрытия используются ионно-плазменные технологии на основе дугового разряда. Первоначально образцы подвергаются ионной очистке в плазме аргона, полученной с помощью дугового генератора газовой плазмы с накаленным катодом, при давлении рабочего газа в вакуумной камере 0,8-1,5 Па. Нанесение промежуточного титанового покрытия осуществляется в плазме непрерывного вакуумно-дугового разряда с током 90 А при давлении остаточного газа в рабочей камере 7-10-4 Па. В течение первых 5 мин на образец подается высокочастотный потенциал смещения амплитудой 1-1,5 кВ и длительностью 3-6 мкс. При этом поток ионов титана позволяет провести дополнительную ионную очистку поверхности образца, нагреть его до температуры 350-400°С и формировать приповерхностный слой с высокой адгезией между покрытием и материалом основы. На непроводящих керамических образцах используется короткоимпульсный высокочастотный потенциал смещения отрицательной полярности с амплитудой импульса 0,4 кВ, длительностью импульса 3 мкс и частотой следования импульсов 105 Гц. Скорость нанесения покрытия при этом составляет 1,1 мкм/мин для неподвижного образца.

Второй этап нанесения покрытий можно проводить в нескольких различных режимах. Так как кальций-фосфатное покрытие формируется на титановом слое, то можно использовать любой из известных электрохимических методов нанесения кальций-фосфатных покрытий на титан. В частности, может использоваться метод микродугового оксидирования, как в патенте RU 2194536. В требуемый по технологическому регламенту электролит, предназначенный для анодирования титана, вводят биоактивное вещество (гидроксилапатит) или смесь веществ, содержащих кальций и фосфор. Имплантат из керамики с промежуточным слоем титана толщиной 5-50 мкм помещают в ванну с электролитом между двумя электродами (например, молибденовыми). Оксидирование проводится в импульсном режиме с одновременной подачей обратного тока или без него. Диапазон рабочих токов составляет 0,1-5 А, напряжения 120-500 В, плотность тока 0,05 А/м, время оксидирования варьировалось от 2 до 60 мин. Толщина формируемых кальций-фосфатных покрытий при достаточной толщине промежуточного титанового слоя составляет 30-50 мкм.

Можно также использовать методы анодирования титана импульсным или постоянным током в условиях искрового разряда, которые описаны в патентах RU 2154463, RU 2221904 и RU 2423150. Покажем их на конкретных примерах.

Пример 1. В 5% раствор фосфорной кислоты добавляют порошок СаО до пересыщенного состояния. Основу керамического имплантата с нанесенной пленкой титана помещают в приготовленный раствор. Через раствор пропускают импульсный ток напряжением 200 В при частоте следования импульсов 0,5 Гц. При этих режимах оксидная пленка на поверхности промежуточного титанового слоя пробивается, образуя искровые разряды. Разряды инициируют синтез кальций-фосфатных соединений, за счет которых и происходит рост биологически активного покрытия. Процесс ведут при постоянном перемешивании и температуре 20-35°С в течение 30 минут. Полученная толщина кальций-фосфатного покрытия составляет 5-10 мкм.

Пример 2. К 25%-ному раствору фосфорной кислоты добавляют порошок СаО сверх пересыщенного состояния. Затем добавляют 10% порошка гидроксиапатита дисперсностью 70 мкм для получения суспензии. Основу имплантата с нанесенной пленкой титана помещают в приготовленный раствор. Через раствор пропускают постоянный ток напряжением 120 В. Процесс ведут при постоянном перемешивании и температуре 20-35°С в течение 20 мин. Полученная толщина покрытия составляет 35-40 мкм.

Пример 3. К 20%-ному раствору фосфорной кислоты добавляют порошок гидроксиапатита до предельного насыщения. Затем добавляют еще 4% порошка гидроксиапатита до получения суспензии. Готовый к покрытию имплантат из керамики с промежуточным слоем титана помещают в ванну с приготовленным электролитом. Через электролит пропускают постоянный ток напряжением 150 В течение 15 минут. Процесс ведут при постоянном перемешивании. Полученная толщина покрытия составляет 15-20 мкм.

Процесс обладает достаточно высокой скоростью нанесения покрытий, требуемая толщина покрытия может быть обеспечена за время в несколько минут. При осаждении титана на керамическую подложку с исходной шероховатости Ra=0,86 мкм, Rz=7,4 мкм формируется покрытие с меньшей шероховатостью Ra=0,75 мкм, Rz=5,8 мкм. При формировании кальций-фосфатного покрытия электрохимическим методом шероховатость увеличивается до Ra=1,05 мкм, Rz=6,9 мкм, что позволяет увеличить площадь контакта биотканей с кальций-фосфатным покрытием, необходимую для остеосинтеза, и повышает прочность их соединения между собой. Исследования адгезионных свойств кальций-фосфатных покрытий методом контролируемого царапания (скретч-тест) показывают, что отрыв и разрушение аморфных кальций-форсфатных покрытий от подслоя титана происходит при нагрузке 2,5 Н. После высокотемпературного отжига аморфных кальций-фосфатных покрытий для формирования кристаллических фаз адгезионные свойства данных структур заметно изменяются, что связано со структурно-фазовыми изменениями не только кальций-фосфатного покрытия, но и титанового подслоя. Отрыв и разрушение отожженного при 700°С и 900°С кальций-форсфатного покрытия от титанового слоя происходит при нагрузке 8,4 Н и 12 Н соответственно. Разрушение адгезионных связей титанового подслоя с материалом керамической основы происходит при нормальной нагрузке, превышающей 35 Н. Высокотемпературный отжиг оказывает влияние и на микротвердость покрытия. Твердость по Виккерсу титанового подслоя до формирования аморфного кальций-фосфатного покрытия 3,5 ГПа, после - 2,6 ГПа. После термообработки при температуре 900°С твердость покрытия увеличивается до 7,8 ГПа.

Биологические свойства покрытий не отличаются от свойств прототипа. Биологическую совместимость кальций-фосфатных покрытий исследовали путем определения их токсичности и остеокондуктивности в культуре ткани in vitro.

Исследования показали, что

- тестируемое кальций-фосфатное (КФ) покрытие на керамической основе не вызывает прямого токсического действия на клетки-мишени,

- кальций-фосфатное покрытие, нанесенное на керамический имплантат не токсично для организма, поддерживает рост костной ткани из костномозговых клеток, обладает хорошей биосовместимостью, способностью к остеоинтеграции, проявляет костепроводящие (остеокондуктивные) свойства.

Таким образом, предложен состав многослойного покрытия, обладающего хорошими остеокондуктивными свойствами, и способ создания таких покрытий на любом керамическом материале.

Кальций-фосфатное биологически активное покрытие на имплантате из корундовой или циркониевой керамики, содержащее промежуточный слой титана толщиной 5-50 мкм на имплантате, нанесенный в плазме непрерывного вакуумного дугового разряда, и слой кальций-фосфатного соединения, нанесенный электрохимическим методом анодирования титана в режиме искрового или дугового разрядов.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 161.
27.08.2014
№216.012.eec8

Способ разрушения многокомпонентных изделий

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их...
Тип: Изобретение
Номер охранного документа: 0002526947
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f1fc

Способ диагностики острого токсического повреждения печени

Изобретение относится к медицине и касается диагностики острого токсического повреждения печени крыс. Способ заключается в выделении липидов, а именно в том, что добавляют 25 мкг 10% раствора тезита при одновременном перемешивании смеси с помощью шейкера при 20°C и частоте колебаний 120 в...
Тип: Изобретение
Номер охранного документа: 0002527770
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f51f

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002528584
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f523

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной...
Тип: Изобретение
Номер охранного документа: 0002528588
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0453

Способ определения равновесности химического состава болотных вод от их гидродинамических условий

Изобретение относится к гидродинамическим и гидрохимическим исследованиям вод торфяных почв. Техническим результатом является определение изменения химического состава болотных вод по глубине торфяной залежи в условиях их гидродинамического режима во времени. В способе определяют закономерность...
Тип: Изобретение
Номер охранного документа: 0002532505
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04af

Способ визуализации ультразвуковой дефектоскопии трехмерного изделия

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно...
Тип: Изобретение
Номер охранного документа: 0002532597
Дата охранного документа: 10.11.2014
Показаны записи 51-60 из 256.
20.10.2013
№216.012.75ac

Способ управления погружением подводного объекта и устройство для его осуществления

Группа изобретений относится к автоматическому управлению подводными объектами с использованием судовых спускоподъемных устройств. Способ заключается в изменении длины частей гибкой механической связи между подводным объектом и судном-носителем. Основное перемещение подводного объекта по...
Тип: Изобретение
Номер охранного документа: 0002495784
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.78a8

Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации

Изобретение относится к области промысловой подготовки нефти. Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации, включающий закачку реагента-деэмульгатора в трубопровод, подачу на вход первого сепаратора воды, нагретой до 100°С тепловой энергией, выделяемой...
Тип: Изобретение
Номер охранного документа: 0002496550
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79b5

Травитель для титана

Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65,...
Тип: Изобретение
Номер охранного документа: 0002496819
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a13

Установка для ионно-лучевой и плазменной обработки

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий. Цилиндрическая вакуумная камера (1) установки...
Тип: Изобретение
Номер охранного документа: 0002496913
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eed

Устройство для индивидуального теплоснабжения

Изобретение относится к теплоэнергетике, а именно к устройствам газификации твердого топлива, используемым для обеспечения потребителя теплом и горячим водоснабжением. Устройство содержит бункер для твердого топлива с расположенными в нем колосниковой решеткой и загрузочным люком,...
Тип: Изобретение
Номер охранного документа: 0002498166
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f60

Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец,...
Тип: Изобретение
Номер охранного документа: 0002498281
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f61

Способ определения содержания водорода в титане

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных...
Тип: Изобретение
Номер охранного документа: 0002498282
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f68

Способ определения платины в рудах по пику селективного электроокисления сu из интерметаллического соединения ptcu методом инверсионной вольтамперометрии

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtCu методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002498289
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f69

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhcu

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику...
Тип: Изобретение
Номер охранного документа: 0002498290
Дата охранного документа: 10.11.2013
+ добавить свой РИД